Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.gradient |
Provides gradient based learning algorithms.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
Modifier and Type | Class and Description |
---|---|
class |
GradientDescendableApproximator
Creates a
radientDescendable from a
VectorizableVectorFunction by estimating the parameter gradient
using a forward-difference approximation of the parameter Jacobian. |
Modifier and Type | Method and Description |
---|---|
GradientDescendable |
GradientDescendable.clone()
Creates a new clone (shallow copy) of this object.
|
Constructor and Description |
---|
ParameterCostEvaluatorDerivativeBased(GradientDescendable internalFunction,
DifferentiableCostFunction costFunction)
Creates a new instance of ParameterCostEvaluatorDerivativeBased
|
Modifier and Type | Method and Description |
---|---|
static SumSquaredErrorCostFunction.Cache |
SumSquaredErrorCostFunction.Cache.compute(GradientDescendable objectToOptimize,
java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> data)
Computes often-used parameters of a sum-squared error term
|
Vector |
AbstractParallelizableCostFunction.computeParameterGradient(GradientDescendable function) |
Vector |
DifferentiableCostFunction.computeParameterGradient(GradientDescendable function)
Differentiates function with respect to its parameters.
|
Vector |
MeanSquaredErrorCostFunction.computeParameterGradient(GradientDescendable function) |
Vector |
ParallelizedCostFunctionContainer.computeParameterGradient(GradientDescendable function) |
java.lang.Object |
ParallelizableCostFunction.computeParameterGradientPartial(GradientDescendable function)
Computes the partial (linear) component of the cost function gradient.
|
java.lang.Object |
SumSquaredErrorCostFunction.computeParameterGradientPartial(GradientDescendable function) |
Constructor and Description |
---|
SubCostGradient(ParallelizableCostFunction costFunction,
GradientDescendable evaluator)
Creates a new instance of SubCostGradient
|
Modifier and Type | Class and Description |
---|---|
class |
DifferentiableFeedforwardNeuralNetwork
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary differentiable squashing (activation) function assigned to
each layer.
|
class |
DifferentiableGeneralizedLinearModel
A GradientDescenable version of a GeneralizedLinearModel, in
other words, a GeneralizedLinearModel where the squashing
function is differentiable
|
class |
MultivariateDiscriminant
Allows learning algorithms (vectorizing, differentiating) on a matrix*vector
multiply.
|
class |
MultivariateDiscriminantWithBias
A multivariate discriminant (matrix multiply) plus a constant vector
that gets added to the output of the discriminant.
|
class |
ThreeLayerFeedforwardNeuralNetwork
This is a "standard" feedforward neural network with a single hidden
layer.
|