Package | Description |
---|---|
gov.sandia.cognition.algorithm |
Provides general interfaces and implementations for algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractParallelAlgorithm
Partial implementation of ParallelAlgorithm.
|
Modifier and Type | Method and Description |
---|---|
static <ResultType> |
ParallelUtil.executeInParallel(java.util.Collection<? extends java.util.concurrent.Callable<ResultType>> tasks,
ParallelAlgorithm algorithm)
Executes the given Callable tasks in parallel using a given thread
pool
|
static int |
ParallelUtil.getNumThreads(ParallelAlgorithm algorithm)
Gets the number of threads in a ParallelAlgorithm by querying the
thread pool
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelBaumWelchAlgorithm<ObservationType>
A Parallelized implementation of some of the methods of the
Baum-Welch Algorithm.
|
class |
ParallelHiddenMarkovModel<ObservationType>
A Hidden Markov Model with parallelized processing.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelLearnerValidationExperiment<InputDataType,FoldDataType,LearnedType,StatisticType,SummaryType>
Parallel version of the LearnerValidationExperiment class that executes
the validations experiments across available cores and hyperthreads.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
A parallel implementation of ClusterDistortionMeasure.
|
class |
ParallelizedCostFunctionContainer
A cost function that automatically splits a ParallelizableCostFunction
across multiple cores/processors to speed up computation.
|
class |
ParallelNegativeLogLikelihood<DataType>
Parallel implementation of the NegativeLogLikleihood cost function
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
|
Modifier and Type | Class and Description |
---|---|
class |
MaximumLikelihoodDistributionEstimator<DataType>
Estimates the most-likely distribution, and corresponding parameters, of
that generated the given data from a pre-determined collection of
candidate parameteric distributions.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelLatentDirichletAllocationVectorGibbsSampler
A parallel implementation of
LatentDirichletAllocationVectorGibbsSampler . |