Package | Description |
---|---|
gov.sandia.cognition.algorithm |
Provides general interfaces and implementations for algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
Modifier and Type | Method and Description |
---|---|
AnytimeAlgorithmWrapper<ResultType,InternalAlgorithm> |
AnytimeAlgorithmWrapper.clone() |
Modifier and Type | Class and Description |
---|---|
class |
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|
Modifier and Type | Class and Description |
---|---|
class |
MinimizerBasedRootFinder
A root finder that uses minimization techniques to find the roots
(zero-crossings).
|
Modifier and Type | Class and Description |
---|---|
static class |
GaussianContextRecognizer.Learner
Creates a GaussianContextRecognizer from a Dataset[Vector] using
a BatchClusterer
|
Modifier and Type | Class and Description |
---|---|
static class |
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians
|
Modifier and Type | Class and Description |
---|---|
class |
DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>>
A method of estimating the parameters of a distribution using an arbitrary
CostFunction and FunctionMinimizer algorithm.
|