public abstract static class AbstractPairwiseMultipleHypothesisComparison.Statistic extends AbstractMultipleHypothesisComparison.Statistic
| Modifier and Type | Field and Description | 
|---|---|
| protected java.util.ArrayList<java.util.ArrayList<ConfidenceStatistic>> | pairwiseTestStatisticsResults from the pair-wise confidence tests. | 
nullHypothesisProbabilities, testStatistics, treatmentCount, uncompensatedAlpha| Constructor and Description | 
|---|
| Statistic(java.util.Collection<? extends java.util.Collection<? extends java.lang.Number>> data,
         double uncompensatedAlpha,
         NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>> pairwiseTest)Creates a new instance of StudentizedMultipleComparisonStatistic | 
| Modifier and Type | Method and Description | 
|---|---|
| boolean | acceptNullHypothesis(int i,
                    int j)Determines if the (i,j) null hypothesis should be accepted (true) or
 rejected (false) . | 
| AbstractPairwiseMultipleHypothesisComparison.Statistic | clone()This makes public the clone method on the  Objectclass and 
 removes the exception that it throws. | 
| protected void | computePairwiseTestResults(java.util.Collection<? extends java.util.Collection<? extends java.lang.Number>> data,
                          NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>> pairwiseTest)Computes the pair-wise confidence test results | 
| abstract double | getAdjustedAlpha(int i,
                int j)Gets the adjusted alpha (p-value threshold) for the given comparison | 
| java.util.ArrayList<java.util.ArrayList<ConfidenceStatistic>> | getPairwiseTestStatistics()Getter for pairwiseTestStatistics | 
getNullHypothesisProbability, getTestStatistic, getTreatmentCount, getUncompensatedAlpha, toStringprotected java.util.ArrayList<java.util.ArrayList<ConfidenceStatistic>> pairwiseTestStatistics
public Statistic(java.util.Collection<? extends java.util.Collection<? extends java.lang.Number>> data,
                 double uncompensatedAlpha,
                 NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>> pairwiseTest)
data - Data from each treatment to consideruncompensatedAlpha - Uncompensated alpha (p-value threshold) for the multiple comparison
 testpairwiseTest - Confidence test used for pair-wise null-hypothesis tests.public AbstractPairwiseMultipleHypothesisComparison.Statistic clone()
AbstractCloneableSerializableObject class and 
 removes the exception that it throws. Its default behavior is to 
 automatically create a clone of the exact type of object that the
 clone is called on and to copy all primitives but to keep all references, 
 which means it is a shallow copy.
 
 Extensions of this class may want to override this method (but call
 super.clone() to implement a "smart copy". That is, to target
 the most common use case for creating a copy of the object. Because of
 the default behavior being a shallow copy, extending classes only need 
 to handle fields that need to have a deeper copy (or those that need to
 be reset). Some of the methods in ObjectUtil may be helpful in
 implementing a custom clone method.
 
 Note: The contract of this method is that you must use
 super.clone() as the basis for your implementation.clone in interface CloneableSerializableclone in class AbstractMultipleHypothesisComparison.Statisticprotected void computePairwiseTestResults(java.util.Collection<? extends java.util.Collection<? extends java.lang.Number>> data,
                                          NullHypothesisEvaluator<java.util.Collection<? extends java.lang.Number>> pairwiseTest)
data - Data from each treatment to considerpairwiseTest - Confidence test used for pair-wise null-hypothesis tests.public java.util.ArrayList<java.util.ArrayList<ConfidenceStatistic>> getPairwiseTestStatistics()
public boolean acceptNullHypothesis(int i,
                                    int j)
MultipleHypothesisComparison.Statistici - First treatment indexj - Second treatment indexpublic abstract double getAdjustedAlpha(int i,
                                        int j)
i - First treatment to comparej - Second treatment to compare