@PublicationReference(author="Wikipedia", title="Negative binomial distribution", type=WebPage, year=2010, url="http://en.wikipedia.org/wiki/Negative_binomial_distribution") public class NegativeBinomialDistribution extends AbstractClosedFormIntegerDistribution implements ClosedFormDiscreteUnivariateDistribution<java.lang.Number>, EstimableDistribution<java.lang.Number,NegativeBinomialDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
NegativeBinomialDistribution.CDF
CDF of the NegativeBinomialDistribution
|
static class |
NegativeBinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
NegativeBinomialDistribution.PMF
PMF of the NegativeBinomialDistribution.
|
static class |
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator
Weighted maximum likelihood estimator of the distribution
|
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_P
Default p, 0.5.
|
static double |
DEFAULT_R
Default r, 1.0.
|
protected double |
p
Probability of a positive outcome (Bernoulli probability), [0,1]
|
protected double |
r
Number of trials before the experiment is stopped,
must be greater than zero.
|
| Constructor and Description |
|---|
NegativeBinomialDistribution()
Creates a new instance of NegativeBinomialDistribution
|
NegativeBinomialDistribution(double r,
double p)
Creates a new instance of NegativeBinomialDistribution
|
NegativeBinomialDistribution(NegativeBinomialDistribution other)
Copy constructor
|
| Modifier and Type | Method and Description |
|---|---|
NegativeBinomialDistribution |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
void |
convertFromVector(Vector parameters)
Converts the object from a Vector of parameters.
|
Vector |
convertToVector()
Converts the object to a vector.
|
NegativeBinomialDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
IntegerSpan |
getDomain()
Returns an object that allows an iteration through the domain
(x-axis, independent variable) of the Distribution
|
int |
getDomainSize()
Gets the size of the domain.
|
NegativeBinomialDistribution.MaximumLikelihoodEstimator |
getEstimator()
Gets an estimator associated with this distribution.
|
java.lang.Integer |
getMaxSupport()
Gets the minimum support (domain or input) of the distribution.
|
java.lang.Double |
getMean()
Gets the arithmetic mean, or "first central moment" or "expectation",
of the distribution.
|
double |
getMeanAsDouble()
Gets the mean of the distribution as a double.
|
java.lang.Integer |
getMinSupport()
Gets the minimum support (domain or input) of the distribution.
|
double |
getP()
Getter for p
|
NegativeBinomialDistribution.PMF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
getR()
Getter for r.
|
double |
getVariance()
Gets the variance of the distribution.
|
int |
sampleAsInt(java.util.Random random)
Draws a single random sample from the distribution as an int.
|
void |
sampleInto(java.util.Random random,
int[] output,
int start,
int length)
Samples values from this distribution as an array of ints.
|
void |
sampleInto(java.util.Random random,
int sampleCount,
java.util.Collection<? super java.lang.Number> output)
Draws multiple random samples from the distribution and puts the result
into the given collection.
|
void |
setP(double p)
Setter for p
|
void |
setR(double r)
Setter for r.
|
java.lang.String |
toString() |
sampleAsIntssample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitsample, samplepublic static final double DEFAULT_P
public static final double DEFAULT_R
protected double r
protected double p
public NegativeBinomialDistribution()
public NegativeBinomialDistribution(double r,
double p)
r - Number of trials before the experiment is stopped,
must be greater than zero.p - Probability of a positive outcome (Bernoulli probability), [0,1]public NegativeBinomialDistribution(NegativeBinomialDistribution other)
other - NegativeBinomialDistribution to copypublic NegativeBinomialDistribution clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface Vectorizableclone in interface CloneableSerializableclone in class AbstractClosedFormUnivariateDistribution<java.lang.Number>public double getP()
public void setP(double p)
p - Probability of a positive outcome (Bernoulli probability), [0,1]public double getR()
public void setR(double r)
r - Number of trials before the experiment is stopped,
must be greater than zero.public java.lang.Double getMean()
DistributionWithMeangetMean in interface DistributionWithMean<java.lang.Number>public double getMeanAsDouble()
UnivariateDistributiongetMeanAsDouble in interface UnivariateDistribution<java.lang.Number>public void sampleInto(java.util.Random random,
int sampleCount,
java.util.Collection<? super java.lang.Number> output)
DistributionsampleInto in interface Distribution<java.lang.Number>random - Random number generator to use.sampleCount - The number of samples to draw. Cannot be negative.output - The collection to add the samples into.public int sampleAsInt(java.util.Random random)
IntegerDistributionsampleAsInt in interface IntegerDistributionrandom - The random number generator to use.public void sampleInto(java.util.Random random,
int[] output,
int start,
int length)
IntegerDistributionsampleInto in interface IntegerDistributionsampleInto in class AbstractClosedFormIntegerDistributionrandom - Random number generator to use.output - The array to write the result into. Cannot be null.start - The offset in the array to start writing at. Cannot be negative.length - The number of values to sample. Cannot be negative.public NegativeBinomialDistribution.CDF getCDF()
UnivariateDistributiongetCDF in interface ClosedFormUnivariateDistribution<java.lang.Number>getCDF in interface UnivariateDistribution<java.lang.Number>public Vector convertToVector()
VectorizableconvertToVector in interface Vectorizablepublic void convertFromVector(Vector parameters)
VectorizableconvertFromVector in interface Vectorizableparameters - The parameters to incorporate.public java.lang.Integer getMinSupport()
UnivariateDistributiongetMinSupport in interface UnivariateDistribution<java.lang.Number>public java.lang.Integer getMaxSupport()
UnivariateDistributiongetMaxSupport in interface UnivariateDistribution<java.lang.Number>public double getVariance()
UnivariateDistributiongetVariance in interface UnivariateDistribution<java.lang.Number>public IntegerSpan getDomain()
DiscreteDistributiongetDomain in interface DiscreteDistribution<java.lang.Number>public int getDomainSize()
DiscreteDistributiongetDomainSize in interface DiscreteDistribution<java.lang.Number>public NegativeBinomialDistribution.PMF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Number>getProbabilityFunction in interface DiscreteDistribution<java.lang.Number>public NegativeBinomialDistribution.MaximumLikelihoodEstimator getEstimator()
EstimableDistributiongetEstimator in interface EstimableDistribution<java.lang.Number,NegativeBinomialDistribution>public java.lang.String toString()
toString in class java.lang.Object