@PublicationReference(author="William M. Bolstad", title="Introduction to Bayesian Statistics: Second Edition", type=Book, year=2007, pages=208) public class UnivariateGaussianMeanBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,UnivariateGaussian,UnivariateGaussian> implements ConjugatePriorBayesianEstimatorPredictor<java.lang.Double,java.lang.Double,UnivariateGaussian,UnivariateGaussian>
| Modifier and Type | Class and Description |
|---|---|
static class |
UnivariateGaussianMeanBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_KNOWN_VARIANCE
Default known variance of the estimated distribution, 1.0.
|
parameter| Modifier | Constructor and Description |
|---|---|
|
UnivariateGaussianMeanBayesianEstimator()
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
|
protected |
UnivariateGaussianMeanBayesianEstimator(BayesianParameter<java.lang.Double,UnivariateGaussian,UnivariateGaussian> parameter)
Creates a new instance
|
|
UnivariateGaussianMeanBayesianEstimator(double knownVariance)
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
|
|
UnivariateGaussianMeanBayesianEstimator(double knownVariance,
UnivariateGaussian belief)
Creates a new instance of UnivariateGaussianMeanBayesianEstimator
|
|
UnivariateGaussianMeanBayesianEstimator(UnivariateGaussian conditional,
UnivariateGaussian prior)
Creates a new instance
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeEquivalentSampleSize(UnivariateGaussian belief)
Computes the equivalent sample size of using the given prior.
|
UnivariateGaussianMeanBayesianEstimator.Parameter |
createParameter(UnivariateGaussian conditional,
UnivariateGaussian prior)
Creates a parameter linking the conditional and prior distributions
|
UnivariateGaussian |
createPredictiveDistribution(UnivariateGaussian posterior)
Creates the predictive distribution from the given posterior.
|
double |
getKnownVariance()
Getter for knownVariance.
|
void |
setKnownVariance(double knownVariance)
Setter for knownVariance.
|
void |
update(UnivariateGaussian updater,
java.lang.Double data)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameterlearn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitcreateConditionalDistribution, getParameterlearnclonecreateInitialLearnedObject, updatepublic static final double DEFAULT_KNOWN_VARIANCE
public UnivariateGaussianMeanBayesianEstimator()
public UnivariateGaussianMeanBayesianEstimator(double knownVariance)
knownVariance - Known variance of the distribution.public UnivariateGaussianMeanBayesianEstimator(double knownVariance,
UnivariateGaussian belief)
belief - Conjugate prior of the posterior belief.knownVariance - Known variance of the distribution.public UnivariateGaussianMeanBayesianEstimator(UnivariateGaussian conditional, UnivariateGaussian prior)
conditional - Distribution from which observations are generatedprior - Conjugate prior to the conditional distributionprotected UnivariateGaussianMeanBayesianEstimator(BayesianParameter<java.lang.Double,UnivariateGaussian,UnivariateGaussian> parameter)
parameter - Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public UnivariateGaussianMeanBayesianEstimator.Parameter createParameter(UnivariateGaussian conditional, UnivariateGaussian prior)
ConjugatePriorBayesianEstimatorcreateParameter in interface ConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,UnivariateGaussian,UnivariateGaussian>conditional - Distribution from which observations are generatedprior - Distribution that generates parameters for the conditionalpublic double getKnownVariance()
public void setKnownVariance(double knownVariance)
knownVariance - Known variance of the distribution.public void update(UnivariateGaussian updater, java.lang.Double data)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.update in interface IncrementalLearner<java.lang.Double,UnivariateGaussian>updater - The object to update.data - The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(UnivariateGaussian belief)
ConjugatePriorBayesianEstimatorcomputeEquivalentSampleSize in interface ConjugatePriorBayesianEstimator<java.lang.Double,java.lang.Double,UnivariateGaussian,UnivariateGaussian>belief - Prior belief to measure.public UnivariateGaussian createPredictiveDistribution(UnivariateGaussian posterior)
createPredictiveDistribution in interface BayesianEstimatorPredictor<java.lang.Double,java.lang.Double,UnivariateGaussian>posterior - Posterior from which to create the predictive distribution