@PublicationReference(author="Wikipedia", title="Conjugate Prior", type=WebPage, year=2009, url="http://en.wikipedia.org/wiki/Conjugate_prior") public class MultinomialBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<Vector,Vector,MultinomialDistribution,DirichletDistribution> implements ConjugatePriorBayesianEstimatorPredictor<Vector,Vector,MultinomialDistribution,DirichletDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
MultinomialBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
| Modifier and Type | Field and Description |
|---|---|
static int |
DEFAULT_NUM_CLASSES
Default number of classes/labels, 2.
|
static int |
DEFAULT_NUM_TRIALS
Default number of trials, 2.
|
parameter| Modifier | Constructor and Description |
|---|---|
|
MultinomialBayesianEstimator()
Creates a new instance of MultinomialBayesianEstimator
|
protected |
MultinomialBayesianEstimator(BayesianParameter<Vector,MultinomialDistribution,DirichletDistribution> parameter)
Creates a new instance
|
|
MultinomialBayesianEstimator(DirichletDistribution initialBelief,
int numTrials)
Creates a new instance of MultinomialBayesianEstimator
|
|
MultinomialBayesianEstimator(int numTrials)
Creates a new instance of MultinomialBayesianEstimator
|
|
MultinomialBayesianEstimator(int numClasses,
int numTrials)
Creates a new instance of MultinomialBayesianEstimator
|
|
MultinomialBayesianEstimator(MultinomialDistribution conditional,
DirichletDistribution prior)
Creates a new instance of PoissonBayesianEstimator
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeEquivalentSampleSize(DirichletDistribution belief)
Computes the equivalent sample size of using the given prior.
|
MultinomialDistribution |
createConditionalDistribution(Vector parameter)
Creates an instance of the class conditional distribution,
parameterized by the given parameter value.
|
MultinomialBayesianEstimator.Parameter |
createParameter(MultinomialDistribution conditional,
DirichletDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
MultivariatePolyaDistribution |
createPredictiveDistribution(DirichletDistribution posterior)
Creates the predictive distribution of new data given the posterior.
|
int |
getNumTrials()
Getter for numTrials
|
void |
setNumTrials(int numTrials)
Setter for numTrials
|
void |
update(DirichletDistribution belief,
Vector value)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, createInitialLearnedObject, getInitialBelief, getParameter, setParameterlearn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetParameterlearnclonecreateInitialLearnedObject, updatepublic static final int DEFAULT_NUM_TRIALS
public static final int DEFAULT_NUM_CLASSES
public MultinomialBayesianEstimator()
public MultinomialBayesianEstimator(int numTrials)
numTrials - Number of trials in the distribution, must be greater than 0.public MultinomialBayesianEstimator(int numClasses,
int numTrials)
numClasses - Number of classes/labels/parametersnumTrials - Number of trials in the distribution, must be greater than 0.public MultinomialBayesianEstimator(DirichletDistribution initialBelief, int numTrials)
initialBelief - Initial belief of the prior.numTrials - Number of trials in the distribution, must be greater than 0.public MultinomialBayesianEstimator(MultinomialDistribution conditional, DirichletDistribution prior)
prior - Default conjugate prior.conditional - Conditional distribution of the conjugate prior.protected MultinomialBayesianEstimator(BayesianParameter<Vector,MultinomialDistribution,DirichletDistribution> parameter)
parameter - Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public MultinomialBayesianEstimator.Parameter createParameter(MultinomialDistribution conditional, DirichletDistribution prior)
ConjugatePriorBayesianEstimatorcreateParameter in interface ConjugatePriorBayesianEstimator<Vector,Vector,MultinomialDistribution,DirichletDistribution>conditional - Distribution from which observations are generatedprior - Distribution that generates parameters for the conditionalpublic double computeEquivalentSampleSize(DirichletDistribution belief)
ConjugatePriorBayesianEstimatorcomputeEquivalentSampleSize in interface ConjugatePriorBayesianEstimator<Vector,Vector,MultinomialDistribution,DirichletDistribution>belief - Prior belief to measure.public void update(DirichletDistribution belief, Vector value)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.update in interface IncrementalLearner<Vector,DirichletDistribution>belief - The object to update.value - The new data for the learning algorithm to use to update
the object.public int getNumTrials()
public void setNumTrials(int numTrials)
numTrials - Number of trials in the distribution, must be greater than 0.public MultinomialDistribution createConditionalDistribution(Vector parameter)
ConjugatePriorBayesianEstimatorcreateConditionalDistribution in interface ConjugatePriorBayesianEstimator<Vector,Vector,MultinomialDistribution,DirichletDistribution>createConditionalDistribution in class AbstractConjugatePriorBayesianEstimator<Vector,Vector,MultinomialDistribution,DirichletDistribution>parameter - Parameter used to create the class conditional distribution.public MultivariatePolyaDistribution createPredictiveDistribution(DirichletDistribution posterior)
BayesianEstimatorPredictorcreatePredictiveDistribution in interface BayesianEstimatorPredictor<Vector,Vector,DirichletDistribution>posterior - Posterior distribution from which to compute the predictive posterior.