ObservationType - Type of observations handled by the MCMC algorithm.ParameterType - Type of parameters to infer.@PublicationReference(author={"Christian P. Robert","George Casella"},title="Monte Carlo Statistical Methods, Second Edition",type=Book,year=2004,pages={267,320}) @PublicationReference(author="Wikipedia",title="Markov chain Monte Carlo",type=WebPage,year=2010,url="http://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo") public interface MarkovChainMonteCarlo<ObservationType,ParameterType> extends BayesianEstimator<ObservationType,ParameterType,DataDistribution<ParameterType>>, AnytimeAlgorithm<DataDistribution<ParameterType>>, Randomized
| Modifier and Type | Method and Description |
|---|---|
int |
getBurnInIterations()
Gets the number of iterations that must transpire before the algorithm
begins collection the samples.
|
ParameterType |
getCurrentParameter()
Gets the current parameters in the random walk.
|
int |
getIterationsPerSample()
Gets the number of iterations that must transpire between capturing
samples from the distribution.
|
void |
setBurnInIterations(int burnInIterations)
Sets the number of iterations that must transpire before the algorithm
begins collection the samples.
|
void |
setIterationsPerSample(int iterationsPerSample)
Sets the number of iterations that must transpire between capturing
samples from the distribution.
|
learnclonegetMaxIterations, getResult, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValid, stopgetRandom, setRandomint getBurnInIterations()
void setBurnInIterations(int burnInIterations)
burnInIterations - The number of iterations that must transpire before the algorithm
begins collection the samples.int getIterationsPerSample()
void setIterationsPerSample(int iterationsPerSample)
iterationsPerSample - The number of iterations that must transpire between capturing
samples from the distribution.ParameterType getCurrentParameter()