public class DefaultConfidenceWeightedBinaryCategorizer extends AbstractConfidenceWeightedBinaryCategorizer
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix.| Modifier and Type | Field and Description |
|---|---|
protected Matrix |
covariance
The covariance matrix.
|
bias, DEFAULT_BIAS, weightsBINARY_CATEGORIES| Constructor and Description |
|---|
DefaultConfidenceWeightedBinaryCategorizer()
Creates a new, uninitialized
DefaultConfidenceWeightedBinaryCategorizer. |
DefaultConfidenceWeightedBinaryCategorizer(Vector mean,
Matrix covariance)
Creates a new
DefaultConfidenceWeightedBinaryCategorizer with
the given mean and covariance. |
| Modifier and Type | Method and Description |
|---|---|
UnivariateGaussian |
evaluateAsGaussian(Vectorizable input)
Returns the univariate Gaussian distribution over the output of
the distribution of weight vectors times the input, with the
confidence that the categorizer was trained using.
|
Matrix |
getCovariance()
Gets the covariance matrix of the categorizer.
|
void |
setCovariance(Matrix covariance)
Sets the covariance matrix.
|
createWeightDistribution, evaluateAsBernoulli, getMean, isInitialized, setMeanclone, evaluateAsDouble, evaluateAsDouble, getBias, getInputDimensionality, getThreshold, getWeights, setBias, setThreshold, setWeights, toStringevaluate, evaluateWithDiscriminantgetCategoriesequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetInputDimensionalitygetThreshold, setThresholdevaluateAsDoubleevaluateWithDiscriminantgetCategoriescloneprotected Matrix covariance
public DefaultConfidenceWeightedBinaryCategorizer()
DefaultConfidenceWeightedBinaryCategorizer.public DefaultConfidenceWeightedBinaryCategorizer(Vector mean, Matrix covariance)
DefaultConfidenceWeightedBinaryCategorizer with
the given mean and covariance. The covariance matrix must be an d by d
matrix where d is the dimensionality of the mean.mean - The mean vector.covariance - The covariance matrix.public UnivariateGaussian evaluateAsGaussian(Vectorizable input)
ConfidenceWeightedBinaryCategorizerinput - The input to evaluate.public Matrix getCovariance()
ConfidenceWeightedBinaryCategorizerpublic void setCovariance(Matrix covariance)
covariance - The covariance matrix.