InputType - Input class to map onto the Output classOutputType - Output of the Evaluatorpublic static class LocallyWeightedFunction.Learner<InputType,OutputType> extends AbstractCloneableSerializable implements SupervisedBatchLearner<InputType,OutputType,LocallyWeightedFunction<? super InputType,OutputType>>
| Constructor and Description |
|---|
Learner(Kernel<? super InputType> kernel,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Creates a new instance of LocallyWeightedFunction
|
| Modifier and Type | Method and Description |
|---|---|
Kernel<? super InputType> |
getKernel()
Getter for kernel
|
SupervisedBatchLearner<InputType,OutputType,?> |
getLearner()
Getter for learner
|
LocallyWeightedFunction<InputType,OutputType> |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
void |
setKernel(Kernel<? super InputType> kernel)
Setter for kernel
|
void |
setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
Setter for learner
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic Learner(Kernel<? super InputType> kernel, SupervisedBatchLearner<InputType,OutputType,?> learner)
kernel - Kernel that provides the weights between an input and each sample
in the input datasetlearner - Learner that takes the Collection of WeightedInputOutputPairs from
the Kernel reweighting and creates a local function approximation at
the given input. I would strongly recommend using fast or closed-form
learners for this.public LocallyWeightedFunction<InputType,OutputType> learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,LocallyWeightedFunction<? super InputType,OutputType>>data - The data that the learning algorithm will use to create an
object of ResultType.public Kernel<? super InputType> getKernel()
public void setKernel(Kernel<? super InputType> kernel)
kernel - Kernel that provides the weights between an input and each sample
in the input datasetpublic SupervisedBatchLearner<InputType,OutputType,?> getLearner()
public void setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
learner - The learner to use