Package | Description |
---|---|
gov.sandia.cognition.evaluator |
Provides interfaces and classes to do with the
Evaluator interface. |
gov.sandia.cognition.framework.learning.converter |
Provides implementations of
CogxelConverter s. |
gov.sandia.cognition.graph | |
gov.sandia.cognition.graph.inference | |
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.performance.categorization |
Provides performance measures for categorizers.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.math.geometry |
Provides classes and interfaces for computational geometry.
|
gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
gov.sandia.cognition.math.matrix.mtj |
Provides a linear algebra package implementation wrapper using the Matrix
Toolkits for Java (MTJ) library.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.text.evaluation |
Provides methods for evaluating text processing algorithms.
|
gov.sandia.cognition.util |
Provides general utility classes.
|
Modifier and Type | Class and Description |
---|---|
class |
CompositeEvaluatorPair<InputType,IntermediateType,OutputType>
Implements a composition of two evaluators.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractCogxelPairConverter<FirstType,SecondType,PairType extends Pair<FirstType,SecondType>>
Partial implementation of CogxelConverters based on a Pair
|
Modifier and Type | Method and Description |
---|---|
Pair<java.lang.Integer,java.lang.Integer> |
DenseMemoryGraph.getEdgeEndpointIds(int i)
Helper that returns the endpoint values for the input edge id.
|
Pair<java.lang.Integer,java.lang.Integer> |
DirectedNodeEdgeGraph.getEdgeEndpointIds(int id)
Return the edge endpoints (by node id) for edge id (where id [0 ...
|
Modifier and Type | Method and Description |
---|---|
java.util.Set<Pair<java.lang.Integer,java.lang.Integer>> |
GraphMetrics.getNodeTriangleEndpointIds(int nodeId)
Returns the other two endpoint ids for all triangles the node
participates in.
|
java.util.Set<Pair<java.lang.Integer,java.lang.Integer>> |
GraphMetrics.getNodeTriangleEndpointIds(NodeNameType nodeName)
Returns the other two endpoint ids for all triangles the node
participates in.
|
java.util.Set<Pair<NodeNameType,NodeNameType>> |
GraphMetrics.getNodeTriangleEndpoints(int nodeId)
Returns the other two endpoint names for all triangles the node
participates in.
|
java.util.Set<Pair<NodeNameType,NodeNameType>> |
GraphMetrics.getNodeTriangleEndpoints(NodeNameType nodeName)
Returns the other two endpoint names for all triangles the node
participates in.
|
java.util.Collection<Pair<NodeNameType,java.lang.Double>> |
DirectedWeightedNodeEdgeGraph.getSuccessorsWithWeights(NodeNameType node)
Returns all the nodes this node connects to with edge weights (outgoing
edges only).
|
java.util.Collection<Pair<NodeNameType,java.lang.Double>> |
WeightedDenseMemoryGraph.getSuccessorsWithWeights(NodeNameType node)
Execution: O(log m + d) where d is the degree of the specified node
(which can be O(m) but is usually O(1)).
|
Modifier and Type | Method and Description |
---|---|
Pair<java.lang.Integer,java.lang.Integer> |
CostSpeedupEnergyFunction.getEdge(int i) |
Pair<java.lang.Integer,java.lang.Integer> |
EdgeMergingEnergyFunction.getEdge(int i) |
Pair<java.lang.Integer,java.lang.Integer> |
EnergyFunction.getEdge(int i)
Returns the indices for the two endpoints in the specified path.
|
Pair<java.lang.Integer,java.lang.Integer> |
GraphWrappingEnergyFunction.getEdge(int i) |
Modifier and Type | Class and Description |
---|---|
class |
CompositeBatchLearnerPair<InputType,IntermediateType,OutputType>
Composes together a pair of batch (typically unsupervised) learners.
|
Modifier and Type | Class and Description |
---|---|
class |
EvaluatedGenome<GenomeType>
The EvaluatedGenome class wraps together a Genome and its cost score.
|
Modifier and Type | Method and Description |
---|---|
protected Pair<java.util.ArrayList<java.util.ArrayList<Vector>>,java.util.ArrayList<Matrix>> |
BaumWelchAlgorithm.computeSequenceParameters()
Computes the gammas and A matrices for each sequence.
|
protected Pair<Vector,int[]> |
HiddenMarkovModel.computeViterbiRecursion(Vector delta,
Vector bn)
Computes the Viterbi recursion for a given "delta" and "b"
|
protected Pair<Vector,int[]> |
ParallelHiddenMarkovModel.computeViterbiRecursion(Vector delta,
Vector bn) |
Modifier and Type | Class and Description |
---|---|
class |
InputOutputSlopeTriplet
Stores an InputOutputPair with corresponding slope (gradient) information
|
Modifier and Type | Class and Description |
---|---|
static class |
LogisticRegression.Function
Class that is a linear discriminant, followed by a sigmoid function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
InputOutputPair<InputType,OutputType>
The InputOutputPair interface is just a container for an input and its
associated output used in supervised learning.
|
interface |
TargetEstimatePair<TargetType,EstimateType>
A Pair that encapsulates a target-estimate Pair.
|
interface |
ValueDiscriminantPair<ValueType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
Interface for a pair of a value and a discriminant for ordering instances
that have the same value.
|
interface |
WeightedInputOutputPair<InputType,OutputType>
The
WeightedInputOutputPair class implements an additional
weighting term on an InputOutputPair , typically used to inform
learning algorithms of the relative weight between examples. |
interface |
WeightedTargetEstimatePair<TargetType,EstimateType>
Extends
TargetEstimatePair with an additional weight field. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractInputOutputPair<InputType,OutputType>
An abstract implementation of the
InputOutputPair interface. |
class |
AbstractTargetEstimatePair<TargetType,EstimateType>
An abstract implementation of the
TargetEstimatePair . |
class |
AbstractValueDiscriminantPair<ValueType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
An abstract implementation of the
ValueDiscriminantPair interface. |
class |
DefaultInputOutputPair<InputType,OutputType>
A default implementation of the
InputOutputPair interface. |
class |
DefaultTargetEstimatePair<TargetType,EstimateType>
A default implementation of the
TargetEstimatePair . |
class |
DefaultValueDiscriminantPair<ValueType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
A default implementation of the
ValueDiscriminantPair interface. |
class |
DefaultWeightedInputOutputPair<InputType,OutputType>
A default implementation of the
WeightedInputOutputPair interface. |
class |
DefaultWeightedTargetEstimatePair<TargetType,EstimateType>
Extends
TargetEstimatePair with an additional weight field. |
class |
DefaultWeightedValueDiscriminant<ValueType>
An implementation of
ValueDiscriminantPair that stores a double
as the discriminant. |
Constructor and Description |
---|
DefaultInputOutputPair(Pair<? extends InputType,? extends OutputType> pair)
Creates a new
DefaultInputOutputPair using the first element of
the given pair as the input and the second element of the given pair as
the output. |
DefaultTargetEstimatePair(Pair<? extends TargetType,? extends EstimateType> other)
Creates a shallow copy of another target-estimate pair.
|
DefaultWeightedInputOutputPair(Pair<? extends InputType,? extends OutputType> pair,
double weight)
Creates a new
DefaultWeightedInputOutputPair with the given
input and output from the given pair plus a weight. |
Modifier and Type | Field and Description |
---|---|
protected Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.learners
The learners that the experiment is being performed on.
|
Modifier and Type | Method and Description |
---|---|
Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.getLearners()
Gets the learners the experiment is being run on.
|
Modifier and Type | Method and Description |
---|---|
LearnerComparisonExperiment.Result<SummaryType> |
LearnerComparisonExperiment.evaluate(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners,
java.util.Collection<? extends InputDataType> data)
Evaluates the two batch learners using the given data on the same set of
validation folds and returns the resulting information including the
confidence statistic that the two are different along with the summary
of their performance.
|
protected void |
LearnerComparisonExperiment.setLearners(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners)
Sets the learners the experiment is being run on.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.Map<Pair<CategoryType,CategoryType>,Evaluator<? super InputType,java.lang.Boolean>> |
BinaryVersusCategorizer.categoryPairsToEvaluatorMap
Maps false-true category pairs .
|
Modifier and Type | Method and Description |
---|---|
java.util.Map<Pair<CategoryType,CategoryType>,Evaluator<? super InputType,java.lang.Boolean>> |
BinaryVersusCategorizer.getCategoryPairsToEvaluatorMap()
Gets the mapping of false-true category pairs to the binary categorizer
that distinguishes them.
|
Modifier and Type | Method and Description |
---|---|
void |
BinaryVersusCategorizer.setCategoryPairsToEvaluatorMap(java.util.Map<Pair<CategoryType,CategoryType>,Evaluator<? super InputType,java.lang.Boolean>> categoryPairsToEvaluatorMap)
Sets the mapping of false-true category pairs to the binary categorizer
that distinguishes them.
|
Constructor and Description |
---|
BinaryVersusCategorizer(java.util.Set<CategoryType> categories,
java.util.Map<Pair<CategoryType,CategoryType>,Evaluator<? super InputType,java.lang.Boolean>> categoryPairsToEvaluatorMap)
Creates a new
BinaryVersusCategorizer . |
Modifier and Type | Class and Description |
---|---|
static class |
SumSquaredErrorCostFunction.GradientPartialSSE
Partial result from the SSE gradient computation
|
Modifier and Type | Method and Description |
---|---|
static DefaultBinaryConfusionMatrix |
DefaultBinaryConfusionMatrix.createFromActualPredictedPairs(java.util.Collection<? extends Pair<? extends java.lang.Boolean,? extends java.lang.Boolean>> pairs)
Creates a new
DefaultConfusionMatrix from the given
actual-predicted pairs. |
static <CategoryType> |
DefaultConfusionMatrix.createFromActualPredictedPairs(java.util.Collection<? extends Pair<? extends CategoryType,? extends CategoryType>> pairs)
Creates a new
DefaultConfusionMatrix from the given
actual-predicted pairs. |
DefaultBinaryConfusionMatrix |
DefaultBinaryConfusionMatrix.ActualPredictedPairSummarizer.summarize(java.util.Collection<? extends Pair<? extends java.lang.Boolean,? extends java.lang.Boolean>> data) |
DefaultConfusionMatrix<CategoryType> |
DefaultConfusionMatrix.ActualPredictedPairSummarizer.summarize(java.util.Collection<? extends Pair<? extends CategoryType,? extends CategoryType>> data) |
Modifier and Type | Method and Description |
---|---|
static Pair<Vector,Matrix> |
MultivariateStatisticsUtil.computeMeanAndCovariance(java.lang.Iterable<? extends Vectorizable> data)
Computes the mean and unbiased covariance Matrix of a multivariate
data set.
|
static Pair<java.lang.Double,java.lang.Double> |
UnivariateStatisticsUtil.computeMeanAndVariance(java.lang.Iterable<? extends java.lang.Number> data)
Computes the mean and unbiased variance of a Collection of data using
the one-pass approach.
|
static Pair<java.lang.Double,java.lang.Double> |
UnivariateStatisticsUtil.computeMinAndMax(java.lang.Iterable<? extends java.lang.Number> data)
Computes the minimum and maximum of a set of data in a single pass.
|
static Pair<Vector,Matrix> |
MultivariateStatisticsUtil.computeWeightedMeanAndCovariance(java.lang.Iterable<? extends WeightedValue<? extends Vectorizable>> data)
Computes the mean and biased covariance Matrix of a multivariate
weighted data set.
|
static Pair<java.lang.Double,java.lang.Double> |
UnivariateStatisticsUtil.computeWeightedMeanAndVariance(java.lang.Iterable<? extends WeightedValue<? extends java.lang.Number>> data)
Computes the mean and unbiased variance of a Collection of data using
the one-pass approach.
|
Modifier and Type | Class and Description |
---|---|
class |
KDTree<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>>
Implementation of a kd-tree.
|
protected static class |
KDTree.InOrderKDTreeIterator<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>>
Iterates through the KDTree using "inorder", also known as "symmetric
traversal", of the tree.
|
protected static class |
KDTree.Neighborhood<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>>
A Collection of nearby pairs.
|
protected class |
KDTree.Neighborhood.Neighbor<VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>>
Holds neighbor information used during the evaluate method and is put
into a priority queue.
|
Modifier and Type | Field and Description |
---|---|
PairType |
KDTree.InOrderKDTreeIterator.nodeValue
Value of the node
|
protected PairType |
KDTree.value
VectorType,DataType value for this node of the subtree.
|
Modifier and Type | Method and Description |
---|---|
static <VectorType extends Vectorizable,DataType,PairType extends Pair<? extends VectorType,DataType>> |
KDTree.createBalanced(java.util.Collection<? extends PairType> points)
Creates a balanced KDTree based on the given collection of Pairs.
|
Modifier and Type | Method and Description |
---|---|
int |
KDTree.PairFirstVectorizableIndexComparator.compare(Pair<? extends Vectorizable,?> o1,
Pair<? extends Vectorizable,?> o2) |
int |
KDTree.PairFirstVectorizableIndexComparator.compare(Pair<? extends Vectorizable,?> o1,
Pair<? extends Vectorizable,?> o2) |
Modifier and Type | Interface and Description |
---|---|
interface |
Vector2D
An interface for a 2-dimensional vector.
|
Modifier and Type | Class and Description |
---|---|
class |
Vector2
Implements a two-dimensional MTJ
DenseVector . |
Modifier and Type | Method and Description |
---|---|
Pair<java.lang.Double,java.util.HashMap<TransferEntropy.TransferEntropyDistributionObject,TransferEntropy.TransferEntropyPartialSumObject>> |
TransferEntropy.computeWithPartialSums()
Computes the transfer entropy value and returns a map of the states with their corresponding partial sums.
|
Modifier and Type | Class and Description |
---|---|
static class |
AdaptiveRejectionSampling.Point
An InputOutputPair that has a natural ordering according to their
input (x-axis) values.
|
Modifier and Type | Method and Description |
---|---|
Pair<java.lang.Double,ClosedFormComputableDistribution<DataType>> |
MaximumLikelihoodDistributionEstimator.DistributionEstimationTask.call() |
Modifier and Type | Method and Description |
---|---|
static ReceiverOperatingCharacteristic |
ReceiverOperatingCharacteristic.createFromTargetEstimatePairs(java.util.Collection<? extends Pair<java.lang.Boolean,? extends java.lang.Number>> data)
Creates an ROC curve based on the scored data with target information.
|
Modifier and Type | Interface and Description |
---|---|
interface |
PrecisionRecallPair
A pair of precision and recall values.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultPrecisionRecallPair
A default implementation of the
PrecisionRecallPair interface. |
Modifier and Type | Interface and Description |
---|---|
interface |
KeyValuePair<KeyType,ValueType>
Represents a key-value pair.
|
interface |
WeightedPair<FirstType,SecondType>
The
WeightedPair interface defines an extension of a normal
Pair that includes an additional weight. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultKeyValuePair<KeyType,ValueType>
A default implementation of the
KeyValuePair interface. |
class |
DefaultPair<FirstType,SecondType>
The
DefaultPair class implements a simple structure for a pair
of two objects, potentially of different types. |
class |
DefaultTemporalValue<ValueType>
The
DefaultTemporalValue class is a default implementation of the
TemporalValue interface. |
class |
DefaultWeightedPair<FirstType,SecondType>
The
DefaultWeightedPair class extends the DefaultPair class
to add a weight to the pair. |
Modifier and Type | Method and Description |
---|---|
boolean |
DefaultPair.equals(Pair<FirstType,SecondType> other) |
Constructor and Description |
---|
DefaultPair(Pair<? extends FirstType,? extends SecondType> other)
Copy constructor.
|