Package | Description |
---|---|
gov.sandia.cognition.learning.performance.categorization |
Provides performance measures for categorizers.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
Modifier and Type | Method and Description |
---|---|
ConfidenceInterval |
DefaultBinaryConfusionMatrixConfidenceInterval.getFalseNegativesRate()
Getter for falseNegativesRate
|
ConfidenceInterval |
DefaultBinaryConfusionMatrixConfidenceInterval.getFalsePositivesRate()
Getter for falsePositivesRate
|
ConfidenceInterval |
DefaultBinaryConfusionMatrixConfidenceInterval.getTrueNegativesRate()
Getter for trueNegativesRate
|
ConfidenceInterval |
DefaultBinaryConfusionMatrixConfidenceInterval.getTruePositivesRate()
Getter for truePositivesRate
|
Modifier and Type | Method and Description |
---|---|
protected void |
DefaultBinaryConfusionMatrixConfidenceInterval.setFalseNegativesRate(ConfidenceInterval falseNegativesRate)
Setter for falseNegativesRate
|
protected void |
DefaultBinaryConfusionMatrixConfidenceInterval.setFalsePositivesRate(ConfidenceInterval falsePositivesRate)
Setter for falsePositivesRate
|
protected void |
DefaultBinaryConfusionMatrixConfidenceInterval.setTrueNegativesRate(ConfidenceInterval trueNegativesRate)
Setter for trueNegativesRate
|
protected void |
DefaultBinaryConfusionMatrixConfidenceInterval.setTruePositivesRate(ConfidenceInterval truePositivesRate)
Setter for truePositivesRate
|
Constructor and Description |
---|
DefaultBinaryConfusionMatrixConfidenceInterval(double confidence,
ConfidenceInterval falsePositivesRate,
ConfidenceInterval falseNegativesRate,
ConfidenceInterval truePositivesRate,
ConfidenceInterval trueNegativesRate)
Creates a new instance of ConfusionMatrixConfidenceInterval
|
Modifier and Type | Method and Description |
---|---|
ConfidenceInterval |
UnivariateRandomVariable.getSamplingError(double confidence)
Gets the 95% confidence interval estimated sampling error associated
with this empirical random variable.
|
Modifier and Type | Class and Description |
---|---|
class |
BayesianCredibleInterval
A Bayesian credible interval defines a bound that a scalar parameter is
within the given interval.
|
Modifier and Type | Class and Description |
---|---|
class |
FieldConfidenceInterval
This class has methods that automatically compute confidence intervals for
Double/double Fields in dataclasses.
|
Modifier and Type | Method and Description |
---|---|
ConfidenceInterval |
GaussianConfidence.computeConfidenceInterval(java.util.Collection<? extends java.lang.Number> data,
double confidence) |
ConfidenceInterval |
StudentTConfidence.computeConfidenceInterval(java.util.Collection<? extends java.lang.Number> data,
double confidence) |
ConfidenceInterval |
BernoulliConfidence.computeConfidenceInterval(java.util.Collection<java.lang.Boolean> data,
double confidence)
Computes the ConfidenceInterval for the Bernoulli parameter based on
the given data and the desired level of confidence.
|
ConfidenceInterval |
ChebyshevInequality.computeConfidenceInterval(java.util.Collection<java.lang.Double> data,
double confidence)
Computes the Chebyshev Inequality for the given level of confidence.
|
ConfidenceInterval |
MarkovInequality.computeConfidenceInterval(java.util.Collection<java.lang.Double> data,
double confidence)
Computes the Markov Inequality Bound for the given data at the
given confidence level.
|
ConfidenceInterval |
ConfidenceIntervalEvaluator.computeConfidenceInterval(DataType data,
double confidence)
Computes a confidence interval for a given dataset and confidence (power)
level
|
ConfidenceInterval |
BernoulliConfidence.computeConfidenceInterval(double mean,
double variance,
int numSamples,
double confidence) |
ConfidenceInterval |
ChebyshevInequality.computeConfidenceInterval(double sampleMean,
double sampleVariance,
int numSamples,
double confidence)
Computes the Chebyshev Inequality for the given level of confidence.
|
ConfidenceInterval |
ConfidenceIntervalEvaluator.computeConfidenceInterval(double mean,
double variance,
int numSamples,
double confidence)
Computes the confidence interval given the mean and variance of
the samples, number of samples, and corresponding confidence interval
|
ConfidenceInterval |
GaussianConfidence.computeConfidenceInterval(double mean,
double variance,
int numSamples,
double confidence) |
ConfidenceInterval |
MarkovInequality.computeConfidenceInterval(double mean,
double variance,
int numSamples,
double confidence) |
ConfidenceInterval |
StudentTConfidence.computeConfidenceInterval(double mean,
double variance,
int numSamples,
double confidence) |
static ConfidenceInterval |
BernoulliConfidence.computeConfidenceInterval(double bernoulliParameter,
int numSamples,
double confidence)
Computes the ConfidenceInterval for the Bernoulli parameter based on
the given data and the desired level of confidence.
|
static ConfidenceInterval |
MarkovInequality.computeConfidenceInterval(double sampleMean,
int numSamples,
double confidence)
Computes the Markov Inequality Bound for the given data at the
given confidence level.
|
static ConfidenceInterval |
GaussianConfidence.computeConfidenceInterval(UnivariateDistribution<?> dataDistribution,
int numSamples,
double confidence)
Computes the Gaussian confidence interval given a distribution of
data, number of samples, and corresponding confidence interval
|
ConfidenceInterval |
StudentTConfidence.Summary.summarize(java.util.Collection<? extends java.lang.Number> data) |
Constructor and Description |
---|
ConfidenceInterval(ConfidenceInterval other)
Copy constructor
|
FieldConfidenceInterval(java.lang.reflect.Field field,
ConfidenceInterval confidenceInterval)
Creates a new instance of FieldConfidenceInterval
|