| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.performance.categorization | 
 Provides performance measures for categorizers. 
 | 
| gov.sandia.cognition.statistics | 
 Provides the inheritance hierarchy for general statistical methods and distributions. 
 | 
| gov.sandia.cognition.statistics.bayesian | 
 Provides algorithms for computing Bayesian estimates of parameters. 
 | 
| gov.sandia.cognition.statistics.method | 
 Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ConfidenceInterval | 
DefaultBinaryConfusionMatrixConfidenceInterval.getFalseNegativesRate()
Getter for falseNegativesRate 
 | 
ConfidenceInterval | 
DefaultBinaryConfusionMatrixConfidenceInterval.getFalsePositivesRate()
Getter for falsePositivesRate 
 | 
ConfidenceInterval | 
DefaultBinaryConfusionMatrixConfidenceInterval.getTrueNegativesRate()
Getter for trueNegativesRate 
 | 
ConfidenceInterval | 
DefaultBinaryConfusionMatrixConfidenceInterval.getTruePositivesRate()
Getter for truePositivesRate 
 | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
DefaultBinaryConfusionMatrixConfidenceInterval.setFalseNegativesRate(ConfidenceInterval falseNegativesRate)
Setter for falseNegativesRate 
 | 
protected void | 
DefaultBinaryConfusionMatrixConfidenceInterval.setFalsePositivesRate(ConfidenceInterval falsePositivesRate)
Setter for falsePositivesRate 
 | 
protected void | 
DefaultBinaryConfusionMatrixConfidenceInterval.setTrueNegativesRate(ConfidenceInterval trueNegativesRate)
Setter for trueNegativesRate 
 | 
protected void | 
DefaultBinaryConfusionMatrixConfidenceInterval.setTruePositivesRate(ConfidenceInterval truePositivesRate)
Setter for truePositivesRate 
 | 
| Constructor and Description | 
|---|
DefaultBinaryConfusionMatrixConfidenceInterval(double confidence,
                                              ConfidenceInterval falsePositivesRate,
                                              ConfidenceInterval falseNegativesRate,
                                              ConfidenceInterval truePositivesRate,
                                              ConfidenceInterval trueNegativesRate)
Creates a new instance of ConfusionMatrixConfidenceInterval 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ConfidenceInterval | 
UnivariateRandomVariable.getSamplingError(double confidence)
Gets the 95% confidence interval estimated sampling error associated 
 with this empirical random variable. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BayesianCredibleInterval
A Bayesian credible interval defines a bound that a scalar parameter is
 within the given interval. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
FieldConfidenceInterval
This class has methods that automatically compute confidence intervals for
 Double/double Fields in dataclasses. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ConfidenceInterval | 
GaussianConfidence.computeConfidenceInterval(java.util.Collection<? extends java.lang.Number> data,
                         double confidence)  | 
ConfidenceInterval | 
StudentTConfidence.computeConfidenceInterval(java.util.Collection<? extends java.lang.Number> data,
                         double confidence)  | 
ConfidenceInterval | 
BernoulliConfidence.computeConfidenceInterval(java.util.Collection<java.lang.Boolean> data,
                         double confidence)
Computes the ConfidenceInterval for the Bernoulli parameter based on
 the given data and the desired level of confidence. 
 | 
ConfidenceInterval | 
ChebyshevInequality.computeConfidenceInterval(java.util.Collection<java.lang.Double> data,
                         double confidence)
Computes the Chebyshev Inequality for the given level of confidence. 
 | 
ConfidenceInterval | 
MarkovInequality.computeConfidenceInterval(java.util.Collection<java.lang.Double> data,
                         double confidence)
Computes the Markov Inequality Bound for the given data at the
 given confidence level. 
 | 
ConfidenceInterval | 
ConfidenceIntervalEvaluator.computeConfidenceInterval(DataType data,
                         double confidence)
Computes a confidence interval for a given dataset and confidence (power)
 level 
 | 
ConfidenceInterval | 
BernoulliConfidence.computeConfidenceInterval(double mean,
                         double variance,
                         int numSamples,
                         double confidence)  | 
ConfidenceInterval | 
ChebyshevInequality.computeConfidenceInterval(double sampleMean,
                         double sampleVariance,
                         int numSamples,
                         double confidence)
Computes the Chebyshev Inequality for the given level of confidence. 
 | 
ConfidenceInterval | 
ConfidenceIntervalEvaluator.computeConfidenceInterval(double mean,
                         double variance,
                         int numSamples,
                         double confidence)
Computes the confidence interval given the mean and variance of
 the samples, number of samples, and corresponding confidence interval 
 | 
ConfidenceInterval | 
GaussianConfidence.computeConfidenceInterval(double mean,
                         double variance,
                         int numSamples,
                         double confidence)  | 
ConfidenceInterval | 
MarkovInequality.computeConfidenceInterval(double mean,
                         double variance,
                         int numSamples,
                         double confidence)  | 
ConfidenceInterval | 
StudentTConfidence.computeConfidenceInterval(double mean,
                         double variance,
                         int numSamples,
                         double confidence)  | 
static ConfidenceInterval | 
BernoulliConfidence.computeConfidenceInterval(double bernoulliParameter,
                         int numSamples,
                         double confidence)
Computes the ConfidenceInterval for the Bernoulli parameter based on
 the given data and the desired level of confidence. 
 | 
static ConfidenceInterval | 
MarkovInequality.computeConfidenceInterval(double sampleMean,
                         int numSamples,
                         double confidence)
Computes the Markov Inequality Bound for the given data at the
 given confidence level. 
 | 
static ConfidenceInterval | 
GaussianConfidence.computeConfidenceInterval(UnivariateDistribution<?> dataDistribution,
                         int numSamples,
                         double confidence)
Computes the Gaussian confidence interval given a distribution of
 data, number of samples, and corresponding confidence interval 
 | 
ConfidenceInterval | 
StudentTConfidence.Summary.summarize(java.util.Collection<? extends java.lang.Number> data)  | 
| Constructor and Description | 
|---|
ConfidenceInterval(ConfidenceInterval other)
Copy constructor 
 | 
FieldConfidenceInterval(java.lang.reflect.Field field,
                       ConfidenceInterval confidenceInterval)
Creates a new instance of FieldConfidenceInterval 
 |