Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Field and Description |
---|---|
protected DistributionEstimator<? super java.lang.Double,? extends DistributionType> |
VectorNaiveBayesCategorizer.Learner.distributionEstimator
The distributionLearner for the distribution of each dimension of each category.
|
Modifier and Type | Method and Description |
---|---|
DistributionEstimator<? super java.lang.Double,? extends DistributionType> |
VectorNaiveBayesCategorizer.Learner.getDistributionEstimator()
Gets the estimation method for the distribution of each dimension of
each category.
|
Modifier and Type | Method and Description |
---|---|
void |
VectorNaiveBayesCategorizer.Learner.setDistributionEstimator(DistributionEstimator<? super java.lang.Double,? extends DistributionType> distributionEstimator)
Sets the estimation method for the distribution of each dimension of
each category.
|
Constructor and Description |
---|
Learner(DistributionEstimator<? super java.lang.Double,? extends DistributionType> distributionEstimator)
Creates a new
BatchLearner with the given distribution
estimator. |
Modifier and Type | Method and Description |
---|---|
DistributionEstimator<DataType,? extends DataDistribution<DataType>> |
DataDistribution.getEstimator() |
DistributionEstimator<ObservationType,? extends DistributionType> |
EstimableDistribution.getEstimator()
Gets an estimator associated with this distribution.
|
Modifier and Type | Class and Description |
---|---|
static class |
BetaBinomialDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta-binomial distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
BinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
DefaultDataDistribution.Estimator<KeyType>
Estimator for a DefaultDataDistribution
|
static class |
ExponentialDistribution.MaximumLikelihoodEstimator
Creates a ExponentialDistribution from data
|
static class |
GammaDistribution.MomentMatchingEstimator
Computes the parameters of a Gamma distribution by the
Method of Moments
|
static class |
GeometricDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
LaplaceDistribution.MaximumLikelihoodEstimator
Estimates the ML parameters of a Laplace distribution from a
Collection of Numbers.
|
static class |
LogNormalDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a log-normal distribution.
|
static class |
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner.
|
static class |
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians
|
static class |
MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Maximum Likelihood Estimate of the MultivariateGaussian
given a set of Vectors
|
static class |
NegativeBinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
PoissonDistribution.MaximumLikelihoodEstimator
Creates a PoissonDistribution from data
|
static class |
ScalarDataDistribution.Estimator
Estimator for a ScalarDataDistribution
|
static class |
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data
|
static class |
StudentTDistribution.MaximumLikelihoodEstimator
Estimates the parameters of the Student-t distribution from the given
data, where the degrees of freedom are estimated from the Kurtosis
of the sample data.
|
static class |
UniformDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a uniform distribution.
|
static class |
UniformIntegerDistribution.MaximumLikelihoodEstimator
Implements a maximum likelihood estimator for the discrete uniform
distribution.
|
static class |
UnivariateGaussian.MaximumLikelihoodEstimator
Creates a UnivariateGaussian from data
|
Modifier and Type | Method and Description |
---|---|
DistributionEstimator<KeyType,? extends DataDistribution<KeyType>> |
DefaultDataDistribution.getEstimator() |