Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.math.geometry |
Provides classes and interfaces for computational geometry.
|
Modifier and Type | Method and Description |
---|---|
Metric<? super DataType> |
OptimizedKMeansClusterer.getMetric()
Gets the metric being used by the algorithm.
|
Constructor and Description |
---|
OptimizedKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
Metric<? super DataType> metric,
ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer.
|
Modifier and Type | Method and Description |
---|---|
Metric<? super InputType> |
KNearestNeighborKDTree.getDivergenceFunction()
Setter for distanceFunction
|
Metric<? super InputType> |
NearestNeighborKDTree.getDivergenceFunction()
Setter for distanceFunction
|
Modifier and Type | Method and Description |
---|---|
void |
KNearestNeighborKDTree.setDivergenceFunction(Metric<? super InputType> divergenceFunction)
Sets the Metric to use.
|
void |
NearestNeighborKDTree.setDivergenceFunction(Metric<? super InputType> divergenceFunction)
Sets the Metric to use.
|
Constructor and Description |
---|
KNearestNeighborKDTree(int k,
KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
Metric<? super InputType> distanceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborKDTree
|
Learner(int k,
Metric<? super Vectorizable> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of Learner
|
Learner(Metric<? super Vectorizable> divergenceFunction)
Creates a new instance of Learner
|
Modifier and Type | Class and Description |
---|---|
class |
ChebyshevDistanceMetric
An implementation of the Chebyshev distance, which is the absolute value of
the largest difference between two vectors in a single dimension.
|
class |
EuclideanDistanceMetric
The
EuclideanDistanceMetric implements a distance metric that
computes the Euclidean distance between two points. |
class |
IdentityDistanceMetric
A distance metric that is 0 if two objects are equal and 1 if they are not.
|
class |
ManhattanDistanceMetric
The
ManhattanDistanceMetric class implements a distance metric
between two vectors that is implemented as the sum of the absolute value of
the difference between the elements in the vectors. |
class |
MinkowskiDistanceMetric
An implementation of the Minkowski distance metric.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelDistanceMetric<InputType>
The
KernelDistanceMetric class implements a distance metric that
utilizes an underlying Kernel for computing the distance. |
Modifier and Type | Method and Description |
---|---|
protected void |
KDTree.findNearest(VectorType key,
int k,
KDTree.Neighborhood<VectorType,DataType,PairType> neighborhood,
Metric<? super VectorType> metric)
Finds the "num" nearest neighbors to the given "key" stored in the
KDTree.
|
java.util.Collection<PairType> |
KDTree.findNearest(VectorType key,
int k,
Metric<? super VectorType> metric)
Finds the "num" nearest neighbors to the given "key" stored in the
KDTree.
|
protected void |
KDTree.findNearestWithinRadius(VectorType key,
double radius,
KDTree.Neighborhood<VectorType,DataType,PairType> neighborhood,
Metric<? super VectorType> metric)
Finds the neighbors within a given distance to the given "key" stored in
the KDTree.
|
java.util.Collection<PairType> |
KDTree.findNearestWithinRadius(VectorType key,
double radius,
Metric<? super VectorType> metric)
Finds the neighbors within a given distance to the given "key" stored in
the KDTree.
|