| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.bayes | Provides algorithms for computing Bayesian categorizers. | 
| gov.sandia.cognition.learning.algorithm.ensemble | Provides ensemble methods. | 
| gov.sandia.cognition.learning.data | Provides data set utilities for learning. | 
| gov.sandia.cognition.learning.function.categorization | Provides functions that output a discrete set of categories. | 
| Modifier and Type | Method and Description | 
|---|---|
| DefaultWeightedValueDiscriminant<CategoryType> | DiscreteNaiveBayesCategorizer. evaluateWithDiscriminant(java.util.Collection<InputType> input) | 
| DefaultWeightedValueDiscriminant<CategoryType> | VectorNaiveBayesCategorizer. evaluateWithDiscriminant(Vectorizable input) | 
| Modifier and Type | Method and Description | 
|---|---|
| DefaultWeightedValueDiscriminant<CategoryType> | VotingCategorizerEnsemble. evaluateWithDiscriminant(InputType input) | 
| DefaultWeightedValueDiscriminant<CategoryType> | WeightedVotingCategorizerEnsemble. evaluateWithDiscriminant(InputType input)Evaluates the ensemble on the given input and returns the category that
 has the most weighted votes as a pair containing the category and the
 percent of the weighted votes that it obtained. | 
| Modifier and Type | Method and Description | 
|---|---|
| static <ValueType> | DefaultWeightedValueDiscriminant. create(ValueType value,
      double weight)Convenience method for creating a new
  DefaultWeightedValueDiscriminantwith the given value and weight. | 
| static <ValueType> | DefaultWeightedValueDiscriminant. create(WeightedValue<? extends ValueType> other)Convenience method for creating a new
  DefaultWeightedValueDiscriminantwith a shallow copy of the given
 the given value and weight. | 
| Modifier and Type | Method and Description | 
|---|---|
| DefaultWeightedValueDiscriminant<CategoryType> | BinaryVersusCategorizer. evaluateWithDiscriminant(InputType input) | 
| DefaultWeightedValueDiscriminant<CategoryType> | WinnerTakeAllCategorizer. evaluateWithDiscriminant(InputType input)Evaluates the categorizer and returns the category along with a weight. | 
| DefaultWeightedValueDiscriminant<CategoryType> | MaximumAPosterioriCategorizer. evaluateWithDiscriminant(ObservationType input) | 
| DefaultWeightedValueDiscriminant<CategoryType> | LinearMultiCategorizer. evaluateWithDiscriminant(Vectorizable input) | 
| DefaultWeightedValueDiscriminant<CategoryType> | WinnerTakeAllCategorizer. findBestCategory(Vector output)Finds the best category (and its output value) from the given vector
 of outputs from a vector evaluator. |