Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
Modifier and Type | Method and Description |
---|---|
DefaultWeightedValueDiscriminant<CategoryType> |
DiscreteNaiveBayesCategorizer.evaluateWithDiscriminant(java.util.Collection<InputType> input) |
DefaultWeightedValueDiscriminant<CategoryType> |
VectorNaiveBayesCategorizer.evaluateWithDiscriminant(Vectorizable input) |
Modifier and Type | Method and Description |
---|---|
DefaultWeightedValueDiscriminant<CategoryType> |
VotingCategorizerEnsemble.evaluateWithDiscriminant(InputType input) |
DefaultWeightedValueDiscriminant<CategoryType> |
WeightedVotingCategorizerEnsemble.evaluateWithDiscriminant(InputType input)
Evaluates the ensemble on the given input and returns the category that
has the most weighted votes as a pair containing the category and the
percent of the weighted votes that it obtained.
|
Modifier and Type | Method and Description |
---|---|
static <ValueType> |
DefaultWeightedValueDiscriminant.create(ValueType value,
double weight)
Convenience method for creating a new
DefaultWeightedValueDiscriminant with the given value and weight. |
static <ValueType> |
DefaultWeightedValueDiscriminant.create(WeightedValue<? extends ValueType> other)
Convenience method for creating a new
DefaultWeightedValueDiscriminant with a shallow copy of the given
the given value and weight. |
Modifier and Type | Method and Description |
---|---|
DefaultWeightedValueDiscriminant<CategoryType> |
BinaryVersusCategorizer.evaluateWithDiscriminant(InputType input) |
DefaultWeightedValueDiscriminant<CategoryType> |
WinnerTakeAllCategorizer.evaluateWithDiscriminant(InputType input)
Evaluates the categorizer and returns the category along with a weight.
|
DefaultWeightedValueDiscriminant<CategoryType> |
MaximumAPosterioriCategorizer.evaluateWithDiscriminant(ObservationType input) |
DefaultWeightedValueDiscriminant<CategoryType> |
LinearMultiCategorizer.evaluateWithDiscriminant(Vectorizable input) |
DefaultWeightedValueDiscriminant<CategoryType> |
WinnerTakeAllCategorizer.findBestCategory(Vector output)
Finds the best category (and its output value) from the given vector
of outputs from a vector evaluator.
|