Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.initializer |
Provides implementations of methods for selecting initial clusters.
|
Modifier and Type | Field and Description |
---|---|
protected FixedClusterInitializer<ClusterType,DataType> |
KMeansClusterer.initializer
The initializer for the algorithm.
|
Modifier and Type | Method and Description |
---|---|
FixedClusterInitializer<ClusterType,DataType> |
KMeansClusterer.getInitializer()
Gets the cluster initializer.
|
Modifier and Type | Method and Description |
---|---|
void |
KMeansClusterer.setInitializer(FixedClusterInitializer<ClusterType,DataType> initializer)
Sets the cluster initializer.
|
MiniBatchKMeansClusterer.Builder<DataType> |
MiniBatchKMeansClusterer.Builder.withInitializer(FixedClusterInitializer<MiniBatchCentroidCluster,Vector> initializer) |
Constructor and Description |
---|
KMeansClusterer(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of KMeansClusterer using the given parameters.
|
KMeansClustererWithRemoval(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<ClusterType,DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
double removalThreshold)
Creates a new instance of KMeansClusterer using the given parameters.
|
MiniBatchKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<MiniBatchCentroidCluster,Vector> initializer,
Semimetric<? super Vector> metric,
ClusterCreator<MiniBatchCentroidCluster,Vector> creator,
java.util.Random random)
Creates a new
MiniBatchKMeansClusterer . |
OptimizedKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
Metric<? super DataType> metric,
ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer.
|
ParallelizedKMeansClusterer(int numRequestedClusters,
int maxIterations,
java.util.concurrent.ThreadPoolExecutor threadPool,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of ParallelizedKMeansClusterer2
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements an abstract FixedClusterInitializer that works by using the
minimum distance from a point to the cluster.
|
class |
DistanceSamplingClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements
FixedClusterInitializer that initializes clusters by
first selecting a random point for the first cluster and then randomly
sampling each successive cluster based on the squared minimum distance from
the point to the existing selected clusters. |
class |
GreedyClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements a FixedClusterInitializer that greedily attempts to create the
initial clusters.
|
class |
NeighborhoodGaussianClusterInitializer
Creates GaussianClusters near existing, but not on top of, data points.
|
class |
RandomClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Creates initial clusters by selecting random data points as singleton
clusters.
|