Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.cluster |
Provides implementations of different types of clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.initializer |
Provides implementations of methods for selecting initial clusters.
|
Modifier and Type | Field and Description |
---|---|
protected ClusterCreator<ClusterType,DataType> |
AgglomerativeClusterer.creator
The merger used to merge two clusters into one element.
|
Modifier and Type | Method and Description |
---|---|
ClusterCreator<ClusterType,DataType> |
AgglomerativeClusterer.getCreator()
Gets the cluster creator.
|
ClusterCreator<ClusterType,DataType> |
DBSCANClusterer.getCreator()
Gets the cluster creator.
|
ClusterCreator<ClusterType,DataType> |
KMeansClusterer.getCreator()
Gets the cluster creator.
|
Modifier and Type | Method and Description |
---|---|
void |
AgglomerativeClusterer.setCreator(ClusterCreator<ClusterType,DataType> creator)
Sets the cluster creator.
|
void |
DBSCANClusterer.setCreator(ClusterCreator<ClusterType,DataType> creator)
Sets the cluster creator.
|
void |
KMeansClusterer.setCreator(ClusterCreator<ClusterType,DataType> creator)
Sets the cluster creator.
|
MiniBatchKMeansClusterer.Builder<DataType> |
MiniBatchKMeansClusterer.Builder.withCreator(ClusterCreator<MiniBatchCentroidCluster,Vector> creator) |
Constructor and Description |
---|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Initializes the clustering to use the given metric between
clusters, and the given cluster creator.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
double maxDistance)
Initializes the clustering to use the given metric between
clusters, the given cluster merger, and the maximum
distance between clusters to allow when merging.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
int minNumClusters)
Initializes the clustering to use the given metric between
clusters, the given cluster creator, and the minimum number of
clusters to allow.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
int minNumClusters,
double maxDistance)
Initializes the clustering to use the given metric between
clusters, the given cluster merger, the minimum number of
clusters to allow, and the maximum minimum distance between
clusters to allow.
|
DBSCANClusterer(double eps,
int minSamples,
Semimetric<? super DataType> metric,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of AffinityPropagation.
|
DBSCANClusterer(Semimetric<? super DataType> metric,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of DBSCANClusterer.
|
KMeansClusterer(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of KMeansClusterer using the given parameters.
|
KMeansClustererWithRemoval(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<ClusterType,DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
double removalThreshold)
Creates a new instance of KMeansClusterer using the given parameters.
|
MiniBatchKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<MiniBatchCentroidCluster,Vector> initializer,
Semimetric<? super Vector> metric,
ClusterCreator<MiniBatchCentroidCluster,Vector> creator,
java.util.Random random)
Creates a new
MiniBatchKMeansClusterer . |
OptimizedKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
Metric<? super DataType> metric,
ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer.
|
ParallelizedKMeansClusterer(int numRequestedClusters,
int maxIterations,
java.util.concurrent.ThreadPoolExecutor threadPool,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of ParallelizedKMeansClusterer2
|
Modifier and Type | Interface and Description |
---|---|
interface |
IncrementalClusterCreator<ClusterType extends Cluster<DataType>,DataType>
An interface for a
ClusterCreator that can incrementally add and
remove members from a cluster. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultClusterCreator<DataType>
The
DefaultClusterCreator class implements a default
ClusterCreator that just creates a DefaultCluster from the
given list of members. |
class |
DefaultIncrementalClusterCreator<DataType>
A default implementation of the
IncrementalClusterCreator interface
that just creates a cluster as having a collection of members. |
class |
GaussianClusterCreator
The
GaussianClusterCreator class implements a ClusterCreator
for creating GaussianClusters by fitting a MultivariateGaussian to the
given set of example vectors. |
class |
MedoidClusterCreator<DataType>
The
MedoidClusterCreator class creates a
CentroidCluster at the sample that minimizes the sum
of the divergence to the objects assigned to the cluster. |
class |
NormalizedCentroidClusterCreator
A cluster creator for
NormalizedCentroidCluster s which are clusters
that have a normalized centroid in addition to the usual centroid. |
class |
VectorMeanCentroidClusterCreator
The
VectorMeanCentroidClusterCreator class implements
a cluster creator for centroid clusters where the centroid is the
mean of the vectors that are members of the cluster. |
class |
VectorMeanMiniBatchCentroidClusterCreator
Implementation of
VectorMeanCentroidClusterCreator for mini-batch
clustering. |
Modifier and Type | Field and Description |
---|---|
protected ClusterCreator<ClusterType,DataType> |
AbstractMinDistanceFixedClusterInitializer.creator
The ClusterCreator to create the initial clusters from.
|
protected ClusterCreator<ClusterType,DataType> |
RandomClusterInitializer.creator
The creator for new clusters.
|
Modifier and Type | Method and Description |
---|---|
ClusterCreator<ClusterType,DataType> |
AbstractMinDistanceFixedClusterInitializer.getCreator()
Gets the cluster creator used to create the initial clusters.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractMinDistanceFixedClusterInitializer.setCreator(ClusterCreator<ClusterType,DataType> creator)
Sets the cluster creator used to create the initial clusters.
|
Constructor and Description |
---|
AbstractMinDistanceFixedClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
AbstractMinDistanceFixedClusterInitializer . |
DistanceSamplingClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
MinDistanceSamplingClusterInitializer . |
GreedyClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
GreedyClusterInitializer . |
RandomClusterInitializer(ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new random cluster creator.
|