Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.cluster |
Provides implementations of different types of clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
gov.sandia.cognition.learning.algorithm.clustering.hierarchy |
Provides a hierarchy for clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.initializer |
Provides implementations of methods for selecting initial clusters.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
static class |
AgglomerativeClusterer.HierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Holds the hierarchy information for the agglomerative clusterer.
|
interface |
BatchClusterer<DataType,ClusterType extends Cluster<DataType>>
The
BatchClusterer interface defines the functionality of a batch
clustering algorithm. |
class |
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
class |
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
class |
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
not have sufficient membership to pass a simple statistical significance
test.
|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
class |
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |
Modifier and Type | Class and Description |
---|---|
static class |
AgglomerativeClusterer.HierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Holds the hierarchy information for the agglomerative clusterer.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusterCreator<ClusterType extends Cluster<DataType>,DataType>
The ClusterCreator defines the functionality of a class that can create a
new cluster from a given collection of members of that cluster.
|
interface |
IncrementalClusterCreator<ClusterType extends Cluster<DataType>,DataType>
An interface for a
ClusterCreator that can incrementally add and
remove members from a cluster. |
Modifier and Type | Class and Description |
---|---|
class |
CentroidCluster<ClusterType>
The CentroidCluster class extends the default cluster to contain a central
element.
|
class |
DefaultCluster<ClusterType>
The DefaultCluster class implements a default cluster which contains a
list of members in an ArrayList along with an index that identifies the
cluster.
|
class |
GaussianCluster
The
GaussianCluster class implements a cluster of Vector
objects that has a MultivariateGaussian object representing the
cluster. |
class |
MiniBatchCentroidCluster |
class |
NormalizedCentroidCluster<ClusterType>
Add the ability to store the centroid of the normalized vectors belonging to
a centroid cluster.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The AbstractClusterToClusterDivergenceFunction class is an abstract class
that helps out implementations of ClusterToClusterDivergenceFunction
implementations by holding a DivergenceFunction between elements of a
cluster.
|
class |
ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterCompleteLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
interface |
ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterDivergenceFunction interface defines a function that computes
the divergence between a cluster and some other object.
|
class |
ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterMeanLinkDivergenceFunction class implements the mean linkage
distance metric between two clusters.
|
class |
ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterSingleLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
interface |
ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
two clusters of the same data type.
|
interface |
WithinClusterDivergence<ClusterType extends Cluster<DataType>,DataType>
Defines a function that computes the divergence of the elements in a cluster.
|
class |
WithinClusterDivergenceWrapper<ClusterType extends Cluster<DataType>,DataType>
Accumulates the results of a
ClusterDivergenceFunction by summing the
divergence of each point to its cluster. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
An abstract implementation of the
ClusterHierarchyNode class. |
interface |
BatchHierarchicalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
BatchHierarchicalClusterer interface defines the functionality
of a batch hierarchical clustering algorithm. |
class |
BinaryClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Implements a binary cluster hierarchy node.
|
interface |
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Defines a node in a hierarchy of clusters.
|
class |
DefaultClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
A default implementation of the cluster hierarchy node.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Defines a node in a hierarchy of clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
An abstract implementation of the
ClusterHierarchyNode class. |
class |
BinaryClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Implements a binary cluster hierarchy node.
|
class |
DefaultClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
A default implementation of the cluster hierarchy node.
|
Modifier and Type | Field and Description |
---|---|
protected ClusterType |
AbstractClusterHierarchyNode.cluster
The cluster associated with the node.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements an abstract FixedClusterInitializer that works by using the
minimum distance from a point to the cluster.
|
class |
DistanceSamplingClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements
FixedClusterInitializer that initializes clusters by
first selecting a random point for the first cluster and then randomly
sampling each successive cluster based on the squared minimum distance from
the point to the existing selected clusters. |
interface |
FixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
The FixedClusterInitializer interface defines the functionality of a class
that can initialize a given number of clusters from a set of elements.
|
class |
GreedyClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements a FixedClusterInitializer that greedily attempts to create the
initial clusters.
|
class |
RandomClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Creates initial clusters by selecting random data points as singleton
clusters.
|
Modifier and Type | Class and Description |
---|---|
class |
ClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
Computes the objective measure for a clustering algorithm, based on the
internal "distortion" of each cluster.
|
class |
ParallelClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
A parallel implementation of ClusterDistortionMeasure.
|
Modifier and Type | Class and Description |
---|---|
static class |
DirichletProcessMixtureModel.DPMMCluster<ObservationType>
Cluster for a step in the DPMM
|