Package | Description |
---|---|
gov.sandia.cognition.factory |
Provides interfaces and implementations of general factory objects.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.performance.categorization |
Provides performance measures for categorizers.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Class and Description |
---|---|
class |
ConstructorBasedFactory<CreatedType>
The
ConstructorBasedFactory class implements a Factory
that takes a constructor and parameters to that constructor used to create
new objects. |
class |
DefaultFactory<CreatedType>
The
DefaultFactory class is a default implementation of the
Factory interface that takes a class as its parameter and uses the
default constructor of the class, called through newInstance(), to create
new objects of that class. |
class |
PrototypeFactory<CreatedType extends CloneableSerializable>
The
PrototypeFactory class implements a Factory that uses a
prototype object to create new objects from by cloning it. |
Modifier and Type | Class and Description |
---|---|
class |
KMeansFactory
Creates a parallelized version of the k-means clustering algorithm for the
typical use: clustering vector data with a Euclidean distance metric.
|
Modifier and Type | Field and Description |
---|---|
protected Factory<? extends DataDistribution<CategoryType>> |
IVotingCategorizerLearner.counterFactory
Factory for counting votes.
|
Modifier and Type | Method and Description |
---|---|
Factory<? extends DataDistribution<CategoryType>> |
IVotingCategorizerLearner.getCounterFactory()
Gets the factory used for creating the object for counting the votes of
the learned ensemble members.
|
Modifier and Type | Method and Description |
---|---|
void |
IVotingCategorizerLearner.setCounterFactory(Factory<? extends DataDistribution<CategoryType>> counterFactory)
Sets the factory used for creating the object for counting the votes of
the learned ensemble members.
|
Constructor and Description |
---|
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
Modifier and Type | Class and Description |
---|---|
static class |
DefaultConfusionMatrix.Factory<CategoryType>
A factory for default confusion matrices.
|
Modifier and Type | Field and Description |
---|---|
protected Factory<? extends ConfusionMatrix<CategoryType>> |
ConfusionMatrixPerformanceEvaluator.factory
The factory used to create the confusion matrix of the evaluator.
|
Modifier and Type | Method and Description |
---|---|
Factory<? extends ConfusionMatrix<CategoryType>> |
ConfusionMatrixPerformanceEvaluator.getFactory()
Gets the factory for the confusion matrix the evaluator creates.
|
Modifier and Type | Method and Description |
---|---|
void |
ConfusionMatrixPerformanceEvaluator.setFactory(Factory<? extends ConfusionMatrix<CategoryType>> factory)
Sets the factory for the confusion matrix the evaluator creates.
|
Constructor and Description |
---|
ConfusionMatrixPerformanceEvaluator(Factory<? extends ConfusionMatrix<CategoryType>> factory)
Creates a new
ConfusionMatrixPerformanceEvaluator using the given
factory. |
Modifier and Type | Interface and Description |
---|---|
interface |
SufficientStatistic<DataType,DistributionType>
Sufficient statistics are the data which are sufficient to store all
information to create an underlying parameter, such as a Distribution.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSufficientStatistic<DataType,DistributionType>
Partial implementation of SufficientStatistic
|
Modifier and Type | Class and Description |
---|---|
class |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
class |
BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
Modifier and Type | Class and Description |
---|---|
static class |
DefaultDataDistribution.DefaultFactory<DataType>
A factory for
DefaultDataDistribution objects using some given
initial capacity for them. |
static class |
MultivariateGaussian.SufficientStatistic
Implements the sufficient statistics of the MultivariateGaussian.
|
static class |
MultivariateGaussian.SufficientStatisticCovarianceInverse
Implements the sufficient statistics of the MultivariateGaussian while
estimating the inverse of the covariance matrix.
|
static class |
UnivariateGaussian.SufficientStatistic
Captures the sufficient statistics of a UnivariateGaussian, which are
the values to estimate the mean and variance.
|