| Package | Description | 
|---|---|
| gov.sandia.cognition.evaluator | 
 Provides interfaces and classes to do with the  
Evaluator interface. | 
| gov.sandia.cognition.framework.learning | 
 Provides a mechanism for putting learned objects into the Cognitive 
 Framework. 
 | 
| gov.sandia.cognition.learning.data.feature | 
 Provides data feature extractors. 
 | 
| gov.sandia.cognition.learning.function.scalar | 
 Provides functions that output real numbers. 
 | 
| gov.sandia.cognition.math.signals | 
 Provides mathematical signal processing methods. 
 | 
| gov.sandia.cognition.statistics.bayesian | 
 Provides algorithms for computing Bayesian estimates of parameters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractStatefulEvaluator<InputType,OutputType,StateType extends CloneableSerializable>
The  
AbstractStatefulEvalutor class is an abstract implementation of
 the StatefulEvalutor interface. | 
| Modifier and Type | Method and Description | 
|---|---|
StatefulEvaluator<InputType,OutputType,CloneableSerializable> | 
StatefulEvaluatorBasedCognitiveModule.getStatefulEvaluator()
Gets the StatefulEvaluator used by the module. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DelayFunction<DataType>
Delays the input and returns the input from the parameterized number of
 samples previous. 
 | 
class  | 
LinearRegressionCoefficientExtractor
Takes a sampled sequence of equal-dimension vectors as input and computes 
 the linear regression coefficients for each dimension in the vectors. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KolmogorovSmirnovEvaluator
You can specify a particular CDF. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DiscreteTimeFilter<StateType extends CloneableSerializable>
A discrete-time filter. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AutoRegressiveMovingAverageFilter
A type of filter using a moving-average calculation. 
 | 
class  | 
LinearDynamicalSystem
A generic Linear Dynamical System of the form
  
x_n = A*x_(n-1) + B*u_n y_n = C*x_n, where x_(n-1) is the previous state, x_n is the current state, u_n is the current input, y_n is the current output, A is the system matrix, B is the input-gain matrix, and C is the output-selector matrix  | 
class  | 
MovingAverageFilter
A type of filter using a moving-average calculation. 
 | 
class  | 
PIDController
This class defines a Proportional-plus-Integral-plus-Derivative set-point
 controller. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected StatefulEvaluator<Vector,Vector,Vector> | 
ExtendedKalmanFilter.motionModel
Model that determines how inputs and the previous state are updated. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
StatefulEvaluator<Vector,Vector,Vector> | 
ExtendedKalmanFilter.getMotionModel()
Getter for motionModel 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
ExtendedKalmanFilter.setMotionModel(StatefulEvaluator<Vector,Vector,Vector> motionModel)
Setter for motionModel 
 | 
| Constructor and Description | 
|---|
ExtendedKalmanFilter(StatefulEvaluator<Vector,Vector,Vector> motionModel,
                    Evaluator<Vector,Vector> observationModel,
                    Vector currentInput,
                    Matrix modelCovariance,
                    Matrix measurementCovariance)
Creates a new instance of ExtendedKalmanFilter 
 |