DataType - Type of data generated by the distributionDistributionType - Type of distribution to estimate the parameters of.public class DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>> extends AnytimeAlgorithmWrapper<DistributionType,FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper>> implements BatchLearner<java.util.Collection<? extends DataType>,DistributionType>, MeasurablePerformanceAlgorithm
| Modifier and Type | Class and Description |
|---|---|
protected class |
DistributionParameterEstimator.DistributionWrapper
Maps the parameters of a Distribution and a CostFunction into a
Vector/Double Evaluator.
|
DEFAULT_ITERATION, iteration| Constructor and Description |
|---|
DistributionParameterEstimator(DistributionType distribution,
CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction)
Creates a new instance of DistributionParameterEstimator
|
DistributionParameterEstimator(DistributionType distribution,
CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction,
FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper> algorithm)
Creates a new instance of DistributionParameterEstimator
|
| Modifier and Type | Method and Description |
|---|---|
DistributionParameterEstimator<DataType,DistributionType> |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
NamedValue<? extends java.lang.Number> |
getPerformance()
Gets the name-value pair that describes the current performance of the
algorithm.
|
DistributionType |
getResult()
Gets the current result of the algorithm.
|
DistributionType |
learn(java.util.Collection<? extends DataType> minimizationParameters)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
algorithmEnded, algorithmStarted, getAlgorithm, getIteration, getMaxIterations, isResultValid, readResolve, setAlgorithm, setMaxIterations, stepEnded, stepStarted, stopaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaddIterativeAlgorithmListener, removeIterativeAlgorithmListenerpublic DistributionParameterEstimator(DistributionType distribution, CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction)
distribution - Distribution to estimate the parameters ofcostFunction - Cost function to use in the minimization procedurepublic DistributionParameterEstimator(DistributionType distribution, CostFunction<? super DistributionType,java.util.Collection<? extends DataType>> costFunction, FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper> algorithm)
distribution - Distribution to estimate the parameters ofcostFunction - Cost function to use in the minimization procedurealgorithm - Minimization algorithm to use, such as FunctionMinimizerBFGS,
FunctionMinimizerDirectionSetPowell, etc.public DistributionParameterEstimator<DataType,DistributionType> clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface CloneableSerializableclone in class AnytimeAlgorithmWrapper<DistributionType extends ClosedFormDistribution<? extends DataType>,FunctionMinimizer<Vector,java.lang.Double,? super DistributionParameterEstimator.DistributionWrapper>>public DistributionType learn(java.util.Collection<? extends DataType> minimizationParameters)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends DataType>,DistributionType extends ClosedFormDistribution<? extends DataType>>minimizationParameters - The data that the learning algorithm will use to create an
object of ResultType.public DistributionType getResult()
AnytimeAlgorithmgetResult in interface AnytimeAlgorithm<DistributionType extends ClosedFormDistribution<? extends DataType>>public NamedValue<? extends java.lang.Number> getPerformance()
MeasurablePerformanceAlgorithmgetPerformance in interface MeasurablePerformanceAlgorithm