public static class StudentTDistribution.PDF extends StudentTDistribution implements UnivariateProbabilityDensityFunction
StudentTDistribution.CDF, StudentTDistribution.MaximumLikelihoodEstimator, StudentTDistribution.PDF, StudentTDistribution.WeightedMaximumLikelihoodEstimatorDEFAULT_DEGREES_OF_FREEDOM, DEFAULT_MEAN, DEFAULT_PRECISION, degreesOfFreedom, mean, precision| Constructor and Description |
|---|
PDF()
Default constructor.
|
PDF(double degreesOfFreedom)
Creates a new instance of PDF
|
PDF(double degreesOfFreedom,
double mean,
double precision)
Creates a new instance of PDF
|
PDF(StudentTDistribution other)
Creates a new instance of PDF
|
| Modifier and Type | Method and Description |
|---|---|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
StudentTDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(double input)
Evaluate the natural logarithm of the distribution function.
|
double |
logEvaluate(java.lang.Double input)
Evaluate the natural logarithm of the distribution function.
|
clone, convertFromVector, convertToVector, getCDF, getDegreesOfFreedom, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getPrecision, getVariance, sampleInto, setDegreesOfFreedom, setMean, setPrecision, toStringgetMean, sampleAsDouble, sampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetCDF, getMean, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic PDF()
public PDF(double degreesOfFreedom)
degreesOfFreedom - Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.public PDF(double degreesOfFreedom,
double mean,
double precision)
degreesOfFreedom - Degrees of freedom in the distribution, usually the number of
datapoints - 1, DOFs must be greater than zero.mean - Mean, or noncentrality parameter, of the distributionprecision - Precision, inverseRootFinder variance, of the distribution, must be greater
than zero.public PDF(StudentTDistribution other)
other - The underlying Student t-distributionpublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic double logEvaluate(java.lang.Double input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<java.lang.Double>input - The input to be evaluatedpublic double logEvaluate(double input)
UnivariateProbabilityDensityFunctionlogEvaluate in interface UnivariateProbabilityDensityFunctioninput - The input value.public StudentTDistribution.PDF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Double>getProbabilityFunction in interface ProbabilityDensityFunction<java.lang.Double>getProbabilityFunction in interface SmoothUnivariateDistributiongetProbabilityFunction in interface UnivariateProbabilityDensityFunctiongetProbabilityFunction in class StudentTDistribution