public static class MultivariatePolyaDistribution.PMF extends MultivariatePolyaDistribution implements ProbabilityMassFunction<Vector>, VectorInputEvaluator<Vector,java.lang.Double>
MultivariatePolyaDistribution.PMFDEFAULT_DIMENSIONALITY, DEFAULT_NUM_TRIALS, parameters| Constructor and Description |
|---|
PMF()
Creates a new instance of DirichletDistribution
|
PMF(int dimensionality,
int numTrials)
Creates a new instance of MultivariatePolyaDistribution
|
PMF(MultivariatePolyaDistribution other)
Copy Constructor.
|
PMF(Vector parameters,
int numTrials)
Creates a new instance of MultivariatePolyaDistribution
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.Double |
evaluate(Vector input)
Evaluates the function on the given input and returns the output.
|
double |
getEntropy()
Gets the entropy of the values in the histogram.
|
MultivariatePolyaDistribution.PMF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(Vector input)
Evaluate the natural logarithm of the distribution function.
|
clone, convertFromVector, convertToVector, getDomain, getDomainSize, getInputDimensionality, getMean, getNumTrials, getParameters, sampleInto, setNumTrials, setParameters, toStringsample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetDomain, getDomainSizesample, sample, sampleIntoclonegetInputDimensionalitypublic PMF()
public PMF(int dimensionality,
int numTrials)
dimensionality - Dimensionality of the distributionnumTrials - Number of trials in the distribution, must be greater than 0.public PMF(Vector parameters, int numTrials)
parameters - Parameters of the Dirichlet distribution, must be at least 2-dimensional
and each element must be positive.numTrials - Number of trials in the distribution, must be greater than 0.public PMF(MultivariatePolyaDistribution other)
other - MultivariatePolyaDistribution to copy.public MultivariatePolyaDistribution.PMF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<Vector>getProbabilityFunction in interface DiscreteDistribution<Vector>getProbabilityFunction in interface ProbabilityMassFunction<Vector>getProbabilityFunction in class MultivariatePolyaDistributionpublic double logEvaluate(Vector input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<Vector>input - The input to be evaluatedpublic java.lang.Double evaluate(Vector input)
Evaluatorpublic double getEntropy()
ProbabilityMassFunctiongetEntropy in interface ProbabilityMassFunction<Vector>