public static class MultivariateGaussian.WeightedMaximumLikelihoodEstimator extends AbstractCloneableSerializable implements DistributionWeightedEstimator<Vector,MultivariateGaussian.PDF>
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_COVARIANCE
Default covariance used in estimation, 1.0E-5.
|
| Constructor and Description |
|---|
WeightedMaximumLikelihoodEstimator()
Default constructor.
|
WeightedMaximumLikelihoodEstimator(double defaultCovariance)
Creates a new instance of WeightedMaximumLikelihoodEstimator
|
| Modifier and Type | Method and Description |
|---|---|
MultivariateGaussian.PDF |
learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of weighted samples.
|
static MultivariateGaussian.PDF |
learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data,
double defaultCovariance)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of weighted samples.
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic static final double DEFAULT_COVARIANCE
public WeightedMaximumLikelihoodEstimator()
public WeightedMaximumLikelihoodEstimator(double defaultCovariance)
defaultCovariance - Amount to add to the diagonal of the
covariance matrixpublic MultivariateGaussian.PDF learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data)
learn in interface BatchLearner<java.util.Collection<? extends WeightedValue<? extends Vector>>,MultivariateGaussian.PDF>data - The weighted samples to calculate the Gaussian from
throws IllegalArgumentException if samples has 1 or fewer samples.public static MultivariateGaussian.PDF learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data, double defaultCovariance)
defaultCovariance - Amount to add to the diagonal of the
covariance matrixdata - The weighted samples to calculate the Gaussian from
throws IllegalArgumentException if samples has 1 or fewer samples.