public static class GammaDistribution.CDF extends GammaDistribution implements SmoothCumulativeDistributionFunction
GammaDistribution.CDF, GammaDistribution.MomentMatchingEstimator, GammaDistribution.PDF, GammaDistribution.WeightedMomentMatchingEstimatorDEFAULT_SCALE, DEFAULT_SHAPE| Constructor and Description |
|---|
CDF()
Default constructor.
|
CDF(double shape,
double scale)
Creates a new instance of CDF
|
CDF(GammaDistribution other)
Copy constructor
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double x,
double shape,
double scale)
Evaluates the CDF of the Gamma distribution about x, given
the shape and scale parameters
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
GammaDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
GammaDistribution.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
clone, convertFromVector, convertToVector, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getProbabilityFunction, getRate, getScale, getShape, getVariance, sample, sample, sampleAsDouble, sampleAsDouble, sampleAsDoubles, sampleInto, sampleInto, sampleStandard, setRate, setScale, setShape, toStringgetMean, sampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, waitgetMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic CDF()
public CDF(double shape,
double scale)
shape - Shape parameter of the Gamma distribution, often written as "k",
must be greater than zeroscale - Scale parameters of the Gamma distribution, often written as "theta",
must be greater than zero.
Note that this is the INVERSE of what octave uses!!public CDF(GammaDistribution other)
other - GammaDistribution to copypublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic static double evaluate(double x,
double shape,
double scale)
x - Input to the CDFshape - Shape parameter of the Gamma distribution, often written as "k",
must be greater than zeroscale - Scale parameters of the Gamma distribution, often written as "theta",
must be greater than zero.
Note that this is the INVERSE of what octave uses!!public GammaDistribution.CDF getCDF()
UnivariateDistributiongetCDF in interface ClosedFormUnivariateDistribution<java.lang.Double>getCDF in interface SmoothUnivariateDistributiongetCDF in interface UnivariateDistribution<java.lang.Double>getCDF in class GammaDistributionpublic GammaDistribution.PDF getDerivative()
ClosedFormDifferentiableEvaluatorgetDerivative in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>getDerivative in interface SmoothCumulativeDistributionFunctionpublic java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluatordifferentiate in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>input - Input about which to compute the derivative