public static class BinomialDistribution.PMF extends BinomialDistribution implements ProbabilityMassFunction<java.lang.Number>
BinomialDistribution.CDF, BinomialDistribution.MaximumLikelihoodEstimator, BinomialDistribution.PMFDEFAULT_N, DEFAULT_P| Constructor and Description |
|---|
PMF()
Default constructor.
|
PMF(BinomialDistribution other)
Copy constructor
|
PMF(int N,
double p)
Creates a new instance of PMF
|
| Modifier and Type | Method and Description |
|---|---|
static double |
evaluate(int N,
int k,
double p)
Returns the binomial CDF for the parameters N, k, p, which is the
probability of exactly k successes in N experiments with expected
per-trial success probability (Bernoulli) p
|
java.lang.Double |
evaluate(java.lang.Number input)
Returns the binomial PMF for the parameters N, k, p, which is the
probability of exactly k successes in N experiments with expected
per-trial success probability (Bernoulli) p
|
double |
getEntropy()
Gets the entropy of the values in the histogram.
|
BinomialDistribution.PMF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
static double |
logEvaluate(int N,
int k,
double p)
Computes the natural logarithm of the PMF.
|
double |
logEvaluate(java.lang.Number input)
Evaluate the natural logarithm of the distribution function.
|
clone, convertFromVector, convertToVector, getCDF, getDomain, getDomainSize, getEstimator, getMaxSupport, getMean, getMeanAsDouble, getMinSupport, getN, getP, getVariance, sampleAsInt, sampleInto, sampleInto, setN, setPsampleAsIntssample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetDomain, getDomainSizesample, sample, sampleIntoclonepublic PMF()
public PMF(int N,
double p)
N - Total number of experiments, must be greater than zerop - Probability of a positive outcome (Bernoulli probability), [0,1]public PMF(BinomialDistribution other)
other - BinomialDistribution to copypublic java.lang.Double evaluate(java.lang.Number input)
public static double evaluate(int N,
int k,
double p)
N - Total number of experimentsk - Total number of successesp - Expected probability of success, Bernoulli parameterpublic double logEvaluate(java.lang.Number input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<java.lang.Number>input - The input to be evaluatedpublic static double logEvaluate(int N,
int k,
double p)
N - Total number of experimentsk - Total number of successesp - Expected probability of success, Bernoulli parameterpublic double getEntropy()
ProbabilityMassFunctiongetEntropy in interface ProbabilityMassFunction<java.lang.Number>public BinomialDistribution.PMF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Number>getProbabilityFunction in interface DiscreteDistribution<java.lang.Number>getProbabilityFunction in interface ProbabilityMassFunction<java.lang.Number>getProbabilityFunction in class BinomialDistribution