| Package | Description | 
|---|---|
| gov.sandia.cognition.statistics.bayesian | 
 Provides algorithms for computing Bayesian estimates of parameters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
 number of clusters and the centroids of the clusters from a set of
 data. 
 | 
class  | 
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
 most general formulation of MCMC but can be slow. 
 | 
class  | 
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType> | 
AbstractMarkovChainMonteCarlo.clone()  |