ObservationType - Type of observationParameterType - Type of parameters to inferpublic static class ImportanceSampling.DefaultUpdater<ObservationType,ParameterType> extends AbstractCloneableSerializable implements ImportanceSampling.Updater<ObservationType,ParameterType>
| Modifier and Type | Field and Description |
|---|---|
protected BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> |
conjuctive
Defines the parameter that connects the conditional and prior
distributions.
|
| Constructor and Description |
|---|
DefaultUpdater()
Default constructor.
|
DefaultUpdater(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
Creates a new instance of DefaultUpdater
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeLogImportanceValue(ParameterType parameter)
Computes the parameter's importance weight.
|
double |
computeLogLikelihood(ParameterType parameter,
java.lang.Iterable<? extends ObservationType> data)
Computes the log likelihood of the data given the parameter
|
BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> |
getConjuctive()
Getter for conjunctive
|
ParameterType |
makeProposal(java.util.Random random)
Samples from the parameter prior
|
void |
setConjuctive(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
Setter for conjunctive
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitcloneprotected BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive
public DefaultUpdater()
public DefaultUpdater(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
conjuctive - Defines the parameter that connects the conditional and prior
distributions.public double computeLogLikelihood(ParameterType parameter, java.lang.Iterable<? extends ObservationType> data)
ImportanceSampling.UpdatercomputeLogLikelihood in interface ImportanceSampling.Updater<ObservationType,ParameterType>parameter - Parameter to considerdata - Data to considerpublic double computeLogImportanceValue(ParameterType parameter)
ImportanceSampling.UpdatercomputeLogImportanceValue in interface ImportanceSampling.Updater<ObservationType,ParameterType>parameter - Parameter to considerpublic ParameterType makeProposal(java.util.Random random)
ImportanceSampling.UpdatermakeProposal in interface ImportanceSampling.Updater<ObservationType,ParameterType>random - Random number generator.public BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> getConjuctive()
public void setConjuctive(BayesianParameter<ParameterType,? extends ProbabilityFunction<ObservationType>,? extends ProbabilityFunction<ParameterType>> conjuctive)
conjuctive - Defines the parameter that connects the conditional and prior
distributions.