public class BayesianLinearRegression.IncrementalEstimator.SufficientStatistic extends AbstractSufficientStatistic<InputOutputPair<? extends Vectorizable,java.lang.Double>,MultivariateGaussian>
count| Constructor and Description |
|---|
SufficientStatistic(MultivariateGaussian prior)
Creates a new instance of SufficientStatistic
|
| Modifier and Type | Method and Description |
|---|---|
MultivariateGaussian.PDF |
create()
Creates a new instance of an object.
|
void |
create(MultivariateGaussian distribution)
Modifies the given distribution with the parameters indicated by the
sufficient statistics
|
Matrix |
getCovarianceInverse()
Getter for covarianceInverse
|
int |
getDimensionality()
Gets the dimensionality of the underlying Gaussian
|
Vector |
getMean()
Computes the mean of the Gaussian, but involves a matrix
inversion and multiplication, so it's expensive.
|
Vector |
getZ()
Getter for z
|
void |
update(InputOutputPair<? extends Vectorizable,java.lang.Double> value)
Updates the sufficient statistics from the given value
|
clone, getCount, setCount, updatepublic SufficientStatistic(MultivariateGaussian prior)
prior - Prior on the weightspublic void update(InputOutputPair<? extends Vectorizable,java.lang.Double> value)
SufficientStatisticvalue - Value to update the sufficient statisticspublic MultivariateGaussian.PDF create()
Factorypublic void create(MultivariateGaussian distribution)
SufficientStatisticdistribution - Distribution to modify by side effectpublic Matrix getCovarianceInverse()
public Vector getZ()
public Vector getMean()
public int getDimensionality()