public static class LogisticRegression.Function extends CompositeEvaluatorPair<Vectorizable,java.lang.Double,java.lang.Double> implements Vectorizable
first, second| Constructor and Description |
|---|
Function()
Creates a new
LogisticRegression.Function. |
Function(int dimensionality)
Creates a new instance of Function
|
| Modifier and Type | Method and Description |
|---|---|
LogisticRegression.Function |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
void |
convertFromVector(Vector parameters)
Converts the object from a Vector of parameters.
|
Vector |
convertToVector()
Converts the object to a vector.
|
LinearDiscriminantWithBias |
getFirst()
Gets the first object.
|
LogisticDistribution.CDF |
getSecond()
Gets the second object.
|
create, evaluatecreate, equals, equals, hashCode, mergeCollections, setFirst, setSecondpublic Function()
LogisticRegression.Function.public Function(int dimensionality)
dimensionality - Dimensionality of the inputspublic LogisticRegression.Function clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface Vectorizableclone in interface CloneableSerializableclone in class DefaultPair<Evaluator<? super Vectorizable,? extends java.lang.Double>,Evaluator<? super java.lang.Double,? extends java.lang.Double>>public Vector convertToVector()
VectorizableconvertToVector in interface Vectorizablepublic void convertFromVector(Vector parameters)
VectorizableconvertFromVector in interface Vectorizableparameters - The parameters to incorporate.public LinearDiscriminantWithBias getFirst()
DefaultPairgetFirst in interface Pair<Evaluator<? super Vectorizable,? extends java.lang.Double>,Evaluator<? super java.lang.Double,? extends java.lang.Double>>getFirst in class DefaultPair<Evaluator<? super Vectorizable,? extends java.lang.Double>,Evaluator<? super java.lang.Double,? extends java.lang.Double>>public LogisticDistribution.CDF getSecond()
DefaultPairgetSecond in interface Pair<Evaluator<? super Vectorizable,? extends java.lang.Double>,Evaluator<? super java.lang.Double,? extends java.lang.Double>>getSecond in class DefaultPair<Evaluator<? super Vectorizable,? extends java.lang.Double>,Evaluator<? super java.lang.Double,? extends java.lang.Double>>