public static class LinearRegression.Statistic extends AbstractConfidenceStatistic
nullHypothesisProbability| Constructor and Description |
|---|
Statistic(java.util.Collection<java.lang.Double> targets,
java.util.Collection<java.lang.Double> estimates,
java.util.Collection<java.lang.Double> weights,
int numParameters)
Creates a new instance of Statistic
|
Statistic(java.util.Collection<java.lang.Double> targets,
java.util.Collection<java.lang.Double> estimates,
int numParameters)
Creates a new instance of Statistic
|
| Modifier and Type | Method and Description |
|---|---|
LinearRegression.Statistic |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
double |
getChiSquare()
Getter for chiSquare
|
double |
getDegreesOfFreedom()
Getter for degreesOfFreedom
|
double |
getMeanL1Error()
Getter for meanL1Error
|
int |
getNumParameters()
Getter for numParameters
|
int |
getNumSamples()
Getter for numSamples
|
double |
getRootMeanSquaredError()
Getter for rootMeanSquaredError
|
double |
getTargetEstimateCorrelation()
Getter for targetEstimateCorrelation
|
double |
getTestStatistic()
Gets the statistic from which we compute the null-hypothesis probability.
|
double |
getUnpredictedErrorFraction()
Getter for unpredictedErrorFraction
|
void |
setChiSquare(double chiSquare)
Setter for chiSquare
|
protected void |
setDegreesOfFreedom(double degreesOfFreedom)
Setter for degreesOfFreedom
|
protected void |
setMeanL1Error(double meanL1Error)
Setter for meanL1Error
|
void |
setNumParameters(int numParameters)
Setter for numParameters
|
protected void |
setNumSamples(int numSamples)
Setter for numSamples
|
protected void |
setRootMeanSquaredError(double rootMeanSquaredError)
Setter fpr rootMeanSquaredError
|
protected void |
setTargetEstimateCorrelation(double targetEstimateCorrelation)
Setter for targetEstimateCorrelation
|
protected void |
setUnpredictedErrorFraction(double unpredictedErrorFraction)
Setter for unpredictedErrorFraction
|
getNullHypothesisProbability, setNullHypothesisProbability, toStringpublic Statistic(java.util.Collection<java.lang.Double> targets,
java.util.Collection<java.lang.Double> estimates,
int numParameters)
targets - Collection of ground-truth targets for the learned approximatorestimates - Collection of estimates from the learned approximatornumParameters - Number of parameters in the learned approximatorpublic Statistic(java.util.Collection<java.lang.Double> targets,
java.util.Collection<java.lang.Double> estimates,
java.util.Collection<java.lang.Double> weights,
int numParameters)
targets - Collection of ground-truth targets for the learned approximatorestimates - Collection of estimates from the learned approximatorweights - Collection of weights to apply to the corresponding target-estimate
pairnumParameters - Number of parameters in the learned approximatorpublic LinearRegression.Statistic clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface CloneableSerializableclone in class AbstractCloneableSerializablepublic double getRootMeanSquaredError()
protected void setRootMeanSquaredError(double rootMeanSquaredError)
rootMeanSquaredError - Root mean-squared error of the targets and estimatespublic double getTargetEstimateCorrelation()
protected void setTargetEstimateCorrelation(double targetEstimateCorrelation)
targetEstimateCorrelation - Pearson Correlation between the targets and estimates, [-1,1]public double getUnpredictedErrorFraction()
protected void setUnpredictedErrorFraction(double unpredictedErrorFraction)
unpredictedErrorFraction - Fraction of variance unaccounted for in the predictions, [0,1]public int getNumSamples()
protected void setNumSamples(int numSamples)
numSamples - Number of samples used to create the Regressionpublic double getDegreesOfFreedom()
protected void setDegreesOfFreedom(double degreesOfFreedom)
degreesOfFreedom - Degrees of freedom in the Regression = numSamples-numParameterspublic double getMeanL1Error()
protected void setMeanL1Error(double meanL1Error)
meanL1Error - Average L1-norm error (absolute value difference) between the
targets and estimatespublic int getNumParameters()
public void setNumParameters(int numParameters)
numParameters - Number of parameters in the learned approximatorpublic double getChiSquare()
public void setChiSquare(double chiSquare)
chiSquare - Gets the value of the chi-square variable,
Total weighted sum-squared error between the targets and estimatespublic double getTestStatistic()
ConfidenceStatistic