| Package | Description |
|---|---|
| gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
| gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
| gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
| Class and Description |
|---|
| AffinityPropagation
The
AffinityPropagation algorithm requires three parameters:
a divergence function, a value to use for self-divergence, and a damping
factor (called lambda in the paper; 0.5 is the default). |
| AgglomerativeClusterer
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
| AgglomerativeClusterer.HierarchyNode
Holds the hierarchy information for the agglomerative clusterer.
|
| BatchClusterer
The
BatchClusterer interface defines the functionality of a batch
clustering algorithm. |
| DBSCANClusterer
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
| DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
| KMeansClusterer
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
| MiniBatchKMeansClusterer
Approximates k-means clustering by working on random subsets of the
data.
|
| MiniBatchKMeansClusterer.Builder
Can be used to create custom
MiniBatchKMeansClusterers without
using the big constructor. |
| OptimizedKMeansClusterer
This class implements an optimized version of the k-means algorithm that
makes use of the triangle inequality to compute the same answer as k-means
while using less distance calculations.
|
| ParallelizedKMeansClusterer
This is a parallel implementation of the k-means clustering algorithm.
|
| PartitionalClusterer
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |
| Class and Description |
|---|
| KMeansClusterer
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
| Class and Description |
|---|
| KMeansClusterer
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |