InputType - Type of inputs to the prediction engine.OutputType - Type of outputs to predict from the prediction engine.EvaluatorType - Type of evaluator produced by the learning algorithm.public class TimeSeriesPredictionLearner<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>> extends AbstractCloneableSerializable implements SupervisedBatchLearner<InputType,OutputType,EvaluatorType>
| Modifier and Type | Field and Description |
|---|---|
static int |
DEFAULT_PREDICTION_HORIZON
Default prediction horizon, 1.
|
| Constructor and Description |
|---|
TimeSeriesPredictionLearner()
Default constructor
|
TimeSeriesPredictionLearner(int predictionHorizon)
Creates a new instance of TimeSeriesPredictionLearner
|
TimeSeriesPredictionLearner(int predictionHorizon,
SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
Creates a new instance of TimeSeriesPredictionLearner
|
| Modifier and Type | Method and Description |
|---|---|
static <InputType,OutputType> |
createPredictionDataset(int predictionHorizon,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a dataset that can be used to predict the future by
"predictionHorizon" samples.
|
int |
getPredictionHorizon()
Getter for predictionHorizon
|
SupervisedBatchLearner<InputType,OutputType,EvaluatorType> |
getSupervisedLearner()
Getter for supervisedLearner
|
EvaluatorType |
learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
void |
setPredictionHorizon(int predictionHorizon)
Setter for predictionHorizon
|
void |
setSupervisedLearner(SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
Setter for supervisedLearner
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic static final int DEFAULT_PREDICTION_HORIZON
public TimeSeriesPredictionLearner()
public TimeSeriesPredictionLearner(int predictionHorizon)
predictionHorizon - Number of samples into the future to predict.public TimeSeriesPredictionLearner(int predictionHorizon,
SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
predictionHorizon - Number of samples into the future to predict.supervisedLearner - Learning algorithm that does the heavy lifting.public int getPredictionHorizon()
public void setPredictionHorizon(int predictionHorizon)
predictionHorizon - Number of samples into the future to predict.public SupervisedBatchLearner<InputType,OutputType,EvaluatorType> getSupervisedLearner()
public void setSupervisedLearner(SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
supervisedLearner - Learning algorithm that does the heavy lifting.public EvaluatorType learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>data - The data that the learning algorithm will use to create an
object of ResultType.public static <InputType,OutputType> java.util.ArrayList<InputOutputPair<InputType,OutputType>> createPredictionDataset(int predictionHorizon, java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
InputType - Type of inputs to the prediction engine.OutputType - Type of outputs to predict from the prediction engine.predictionHorizon - Number of samples into the future to predict.data - Data to align for predicting into the future.