Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.text.spelling |
Provides classes for spelling.
|
Constructor and Description |
---|
DiscreteNaiveBayesCategorizer(int inputDimensionality,
DefaultDataDistribution<CategoryType> priorProbabilities,
java.util.Map<CategoryType,java.util.List<DefaultDataDistribution<InputType>>> conditionalProbabilities)
Creates a new instance of DiscreteNaiveBayesCategorizer.
|
Constructor and Description |
---|
DiscreteNaiveBayesCategorizer(int inputDimensionality,
DefaultDataDistribution<CategoryType> priorProbabilities,
java.util.Map<CategoryType,java.util.List<DefaultDataDistribution<InputType>>> conditionalProbabilities)
Creates a new instance of DiscreteNaiveBayesCategorizer.
|
Modifier and Type | Method and Description |
---|---|
DefaultDataDistribution<CategoryType> |
VotingCategorizerEnsemble.evaluateAsVotes(InputType input)
Evaluates the ensemble as votes.
|
DefaultDataDistribution<CategoryType> |
WeightedVotingCategorizerEnsemble.evaluateAsVotes(InputType input)
Evaluates the ensemble on the given input and returns the distribution
of votes over the output categories.
|
Modifier and Type | Method and Description |
---|---|
static <OutputType> |
CategorizationTreeLearner.getOutputCounts(java.util.Collection<? extends InputOutputPair<?,OutputType>> data)
Creates a histogram of values based on the output values in the given
collection of pairs.
|
Modifier and Type | Method and Description |
---|---|
DefaultPair<java.lang.Double,java.lang.Double> |
AbstractVectorThresholdMaximumGainLearner.computeBestGainAndThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data,
int dimension,
DefaultDataDistribution<OutputType> baseCounts)
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
|
protected DefaultPair<java.lang.Double,java.lang.Double> |
AbstractVectorThresholdMaximumGainLearner.computeBestGainAndThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data,
int dimension,
DefaultDataDistribution<OutputType> baseCounts,
java.util.ArrayList<DefaultWeightedValue<OutputType>> values)
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
|
abstract double |
AbstractVectorThresholdMaximumGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the gain of a given split.
|
abstract double |
AbstractVectorThresholdMaximumGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the gain of a given split.
|
abstract double |
AbstractVectorThresholdMaximumGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the gain of a given split.
|
double |
VectorThresholdGiniImpurityLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the Gini impurity for the
given split.
|
double |
VectorThresholdGiniImpurityLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the Gini impurity for the
given split.
|
double |
VectorThresholdGiniImpurityLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the Gini impurity for the
given split.
|
double |
VectorThresholdHellingerDistanceLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the mean Hellinger distance for the
given split.
|
double |
VectorThresholdHellingerDistanceLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the mean Hellinger distance for the
given split.
|
double |
VectorThresholdHellingerDistanceLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts)
Computes the split gain by computing the mean Hellinger distance for the
given split.
|
double |
VectorThresholdInformationGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts) |
double |
VectorThresholdInformationGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts) |
double |
VectorThresholdInformationGainLearner.computeSplitGain(DefaultDataDistribution<OutputType> baseCounts,
DefaultDataDistribution<OutputType> positiveCounts,
DefaultDataDistribution<OutputType> negativeCounts) |
static <DataType> double |
VectorThresholdGiniImpurityLearner.giniImpurity(DefaultDataDistribution<DataType> counts)
Computes the Gini impurity of a histogram.
|
Modifier and Type | Method and Description |
---|---|
DefaultDataDistribution<ParameterType> |
AbstractMarkovChainMonteCarlo.getResult() |
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractMarkovChainMonteCarlo.setResult(DefaultDataDistribution<ParameterType> result)
Setter for result
|
Modifier and Type | Class and Description |
---|---|
class |
DataCountTreeSetBinnedMapHistogram<ValueType extends java.lang.Comparable<? super ValueType>>
The
DataCountTreeSetBinnedMapHistogram class extends a
DefaultDataDistribution by mapping values to user defined bins
using a TreeSetBinner . |
static class |
DefaultDataDistribution.PMF<KeyType>
PMF of the DefaultDataDistribution
|
class |
ScalarDataDistribution
A Data Distribution that uses Doubles as its keys, making it a univariate
distribution
|
static class |
ScalarDataDistribution.CDF
CDF of the ScalarDataDistribution, maintains the keys/domain in
sorted order (TreeMap), so it's slower than it's peers.
|
static class |
ScalarDataDistribution.PMF
PMF of the ScalarDataDistribution
|
Modifier and Type | Method and Description |
---|---|
DefaultDataDistribution<KeyType> |
DefaultDataDistribution.clone() |
DefaultDataDistribution<DataType> |
DefaultDataDistribution.DefaultFactory.create() |
Modifier and Type | Field and Description |
---|---|
protected DefaultDataDistribution<java.lang.String> |
SimpleStatisticalSpellingCorrector.wordCounts
Maps known words to the number of times they've been seen.
|
Modifier and Type | Method and Description |
---|---|
DefaultDataDistribution<java.lang.String> |
SimpleStatisticalSpellingCorrector.getWordCounts()
Gets the dictionary of word counts.
|
Modifier and Type | Method and Description |
---|---|
void |
SimpleStatisticalSpellingCorrector.setWordCounts(DefaultDataDistribution<java.lang.String> wordCounts)
Sets the dictionary of words counts.
|
Constructor and Description |
---|
SimpleStatisticalSpellingCorrector(DefaultDataDistribution<java.lang.String> wordCounts,
char[] alphabet)
Creates a new
SimpleStatisticalSpellingCorrector . |