Package | Description |
---|---|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Method and Description |
---|---|
DistributionWeightedEstimator<ObservationType,? extends DistributionType> |
EstimableWeightedDistribution.getWeightedEstimator()
Gets an estimator associated with this distribution for weighted data
|
Modifier and Type | Class and Description |
---|---|
static class |
BetaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
DefaultDataDistribution.WeightedEstimator<KeyType>
A weighted estimator for a DefaultDataDistribution
|
static class |
ExponentialDistribution.WeightedMaximumLikelihoodEstimator
Creates a ExponentialDistribution from weighted data
|
static class |
GammaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Gamma distribution using the matching
of moments, not maximum likelihood.
|
static class |
LaplaceDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
static class |
LogNormalDistribution.WeightedMaximumLikelihoodEstimator
Maximum Likelihood Estimator from weighted data
|
static class |
MultivariateGaussian.WeightedMaximumLikelihoodEstimator
Computes the Weighted Maximum Likelihood Estimate of the
MultivariateGaussian given a weighted set of Vectors
|
static class |
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator
Weighted maximum likelihood estimator of the distribution
|
static class |
PoissonDistribution.WeightedMaximumLikelihoodEstimator
Creates a PoissonDistribution from weighted data.
|
static class |
StudentTDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
static class |
UnivariateGaussian.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends DistributionWeightedEstimator<java.lang.Double,? extends SmoothUnivariateDistribution>> |
ScalarMixtureDensityModel.EMLearner.getLearners()
Getter for learners
|
Modifier and Type | Method and Description |
---|---|
void |
ScalarMixtureDensityModel.EMLearner.setLearners(java.util.Collection<? extends DistributionWeightedEstimator<java.lang.Double,? extends SmoothUnivariateDistribution>> learners)
Setter for learners
|
Constructor and Description |
---|
EMLearner(int numClusters,
DistributionWeightedEstimator<java.lang.Double,? extends SmoothUnivariateDistribution> learner,
java.util.Random random)
Creates a new instance of EMLearner
|
Constructor and Description |
---|
EMLearner(java.util.Random random,
java.util.Collection<? extends DistributionWeightedEstimator<java.lang.Double,? extends SmoothUnivariateDistribution>> learners)
Creates a new instance of EMLearner
|