Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.gradient |
Provides gradient based learning algorithms.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
gov.sandia.cognition.math.signals |
Provides mathematical signal processing methods.
|
Modifier and Type | Interface and Description |
---|---|
interface |
GradientDescendable
Defines the functionality of an object that is required in order to apply
the gradient descent algorithm to it.
|
Modifier and Type | Class and Description |
---|---|
class |
GradientDescendableApproximator
Creates a
radientDescendable from a
VectorizableVectorFunction by estimating the parameter gradient
using a forward-difference approximation of the parameter Jacobian. |
Modifier and Type | Method and Description |
---|---|
VectorizableVectorFunction |
GradientDescendableApproximator.getFunction()
Getter for function
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
GradientDescendableApproximator.computeParameterGradient(VectorizableVectorFunction function,
Vector input,
double deltaSize)
Computes a forward-differences approximation to the parameter Jacobian
|
void |
GradientDescendableApproximator.setFunction(VectorizableVectorFunction function)
Setter for function
|
Constructor and Description |
---|
GradientDescendableApproximator(VectorizableVectorFunction function)
Creates a new instance of GradientDescendableApproximator
|
GradientDescendableApproximator(VectorizableVectorFunction function,
double deltaSize)
Creates a new instance of GradientDescendableApproximator
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
interface |
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
|
Constructor and Description |
---|
ParameterCostEvaluatorDerivativeFree(VectorizableVectorFunction internalFunction,
SupervisedCostFunction<Vector,Vector> costFunction)
Creates a new instance of ParameterCostEvaluatorDerivativeFree
|
Modifier and Type | Class and Description |
---|---|
class |
DifferentiableFeedforwardNeuralNetwork
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary differentiable squashing (activation) function assigned to
each layer.
|
class |
DifferentiableGeneralizedLinearModel
A GradientDescenable version of a GeneralizedLinearModel, in
other words, a GeneralizedLinearModel where the squashing
function is differentiable
|
class |
FeedforwardNeuralNetwork
A feedforward neural network that can have an arbitrary number of layers,
and an arbitrary squashing (activation) function assigned to each layer.
|
class |
GeneralizedLinearModel
A VectorizableVectorFunction that is a matrix multiply followed by a
VectorFunction...
|
class |
MultivariateDiscriminant
Allows learning algorithms (vectorizing, differentiating) on a matrix*vector
multiply.
|
class |
MultivariateDiscriminantWithBias
A multivariate discriminant (matrix multiply) plus a constant vector
that gets added to the output of the discriminant.
|
class |
ThreeLayerFeedforwardNeuralNetwork
This is a "standard" feedforward neural network with a single hidden
layer.
|
Modifier and Type | Interface and Description |
---|---|
interface |
VectorizableDifferentiableVectorFunction
A VectorizableVectorFunction that also define a derivative
(this is needed for GradientDescendable).
|
Modifier and Type | Method and Description |
---|---|
VectorizableVectorFunction |
VectorizableVectorFunction.clone()
Creates a new clone (shallow copy) of this object.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearDynamicalSystem
A generic Linear Dynamical System of the form
x_n = A*x_(n-1) + B*u_n y_n = C*x_n, where x_(n-1) is the previous state, x_n is the current state, u_n is the current input, y_n is the current output, A is the system matrix, B is the input-gain matrix, and C is the output-selector matrix |