Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
Modifier and Type | Method and Description |
---|---|
Semimetric<? super DataType> |
DBSCANClusterer.getMetric()
Gets the distance metric the clustering uses.
|
Modifier and Type | Method and Description |
---|---|
static ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> |
KMeansFactory.create(int numClusters,
Semimetric<? super Vector> distanceMetric,
java.util.Random random)
Creates a new parallelized k-means clustering algorithm for vector data
with the given number of clusters (k), distance metric, and random
number generator.
|
void |
DBSCANClusterer.setMetric(Semimetric<? super DataType> metric)
Sets the distance metric the clustering uses.
|
Constructor and Description |
---|
Builder(int numClusters,
Semimetric<? super Vector> metric)
Create a mini-batch k-means clusterer builder and set it to
the given number of clusters.
|
DBSCANClusterer(double eps,
int minSamples,
Semimetric<? super DataType> metric,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of AffinityPropagation.
|
DBSCANClusterer(Semimetric<? super DataType> metric,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of DBSCANClusterer.
|
MiniBatchKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<MiniBatchCentroidCluster,Vector> initializer,
Semimetric<? super Vector> metric,
ClusterCreator<MiniBatchCentroidCluster,Vector> creator,
java.util.Random random)
Creates a new
MiniBatchKMeansClusterer . |
Modifier and Type | Class and Description |
---|---|
class |
ChebyshevDistanceMetric
An implementation of the Chebyshev distance, which is the absolute value of
the largest difference between two vectors in a single dimension.
|
class |
CosineDistanceMetric
The
CosineDistanceMetric class implements a semimetric between
two vectors based on the cosine between the vectors. |
class |
EuclideanDistanceMetric
The
EuclideanDistanceMetric implements a distance metric that
computes the Euclidean distance between two points. |
class |
EuclideanDistanceSquaredMetric
The
EuclideanDistanceSquaredMetric implements a distance metric
that computes the squared Euclidean distance between two points. |
class |
IdentityDistanceMetric
A distance metric that is 0 if two objects are equal and 1 if they are not.
|
class |
ManhattanDistanceMetric
The
ManhattanDistanceMetric class implements a distance metric
between two vectors that is implemented as the sum of the absolute value of
the difference between the elements in the vectors. |
class |
MinkowskiDistanceMetric
An implementation of the Minkowski distance metric.
|
class |
WeightedEuclideanDistanceMetric
A distance metric that weights each dimension of a vector differently before
computing Euclidean distance.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelDistanceMetric<InputType>
The
KernelDistanceMetric class implements a distance metric that
utilizes an underlying Kernel for computing the distance. |
Modifier and Type | Interface and Description |
---|---|
interface |
Metric<EvaluatedType>
A metric is a non-negative function that satisfies the following properties
g(x, y) + g(y, z) >= g(x, z)
g(x, y) == g(y, x)
g(x, x) == 0.
|