Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.performance |
Provides performance measures.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
Modifier and Type | Field and Description |
---|---|
static SupervisedCostFunction<Vector,Vector> |
AbstractMinimizerBasedParameterCostMinimizer.DEFAULT_COST_FUNCTION
Default cost function,
SumSquaredErrorCostFunction |
Modifier and Type | Method and Description |
---|---|
SupervisedCostFunction<Vector,Vector> |
AbstractMinimizerBasedParameterCostMinimizer.getCostFunction() |
Modifier and Type | Method and Description |
---|---|
void |
AbstractMinimizerBasedParameterCostMinimizer.setCostFunction(SupervisedCostFunction<Vector,Vector> costFunction)
Setter for costFunction
|
Constructor and Description |
---|
AbstractMinimizerBasedParameterCostMinimizer(FunctionMinimizer<Vector,java.lang.Double,? super EvaluatorType> algorithm,
SupervisedCostFunction<Vector,Vector> costFunction)
Creates a new instance of AbstractMinimizerBasedParameterCostMinimizer
|
ParameterCostEvaluatorDerivativeFree(VectorizableVectorFunction internalFunction,
SupervisedCostFunction<Vector,Vector> costFunction)
Creates a new instance of ParameterCostEvaluatorDerivativeFree
|
Modifier and Type | Interface and Description |
---|---|
interface |
DifferentiableCostFunction
The
DifferentiableCostFunction is a cost function that can
be differentiated. |
interface |
ParallelizableCostFunction
Interface describing a cost function that can (largely) be computed in
parallel.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractParallelizableCostFunction
Partial implementation of the ParallelizableCostFunction
|
class |
AbstractSupervisedCostFunction<InputType,TargetType>
Partial implementation of SupervisedCostFunction
|
class |
MeanL1CostFunction
Cost function that evaluates the mean 1-norm error (absolute value of
difference) weighted by a sample "weight" that is embedded in each sample.
|
class |
MeanSquaredErrorCostFunction
The MeanSquaredErrorCostFunction implements a cost function for functions
that take as input a vector and return a vector.
|
class |
ParallelizedCostFunctionContainer
A cost function that automatically splits a ParallelizableCostFunction
across multiple cores/processors to speed up computation.
|
class |
SumSquaredErrorCostFunction
This is the sum-squared error cost function
|
Modifier and Type | Class and Description |
---|---|
class |
MeanZeroOneErrorEvaluator<InputType,DataType>
The
MeanZeroOneErrorEvaluator class implements a method for
computing the performance of a supervised learner by the mean number of
incorrect values between the target and estimated outputs. |