Package | Description |
---|---|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultPartitionedDataset<DataType>
The PartitionedDataset class provides a simple container for the training
and testing datasets to be held together.
|
Modifier and Type | Method and Description |
---|---|
PartitionedDataset<DataType> |
DataPartitioner.createPartition(java.util.Collection<? extends DataType> data)
Partitions the given collection of data into a training set and a
testing set.
|
PartitionedDataset<DataType> |
RandomDataPartitioner.createPartition(java.util.Collection<? extends DataType> data)
Randomly partitions the given data into a training and testing set.
|
static <DataType> PartitionedDataset<DataType> |
RandomDataPartitioner.createPartition(java.util.Collection<? extends DataType> data,
double trainingPercent,
java.util.Random random)
Randomly partitions the given data into a training and testing set.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<PartitionedDataset<DataType>> |
CrossFoldCreator.createFolds(java.util.Collection<? extends DataType> data)
Creates the requested number of cross-validation folds from the given
data.
|
java.util.List<PartitionedDataset<DataType>> |
LeaveOneOutFoldCreator.createFolds(java.util.Collection<? extends DataType> data)
Creates a list of folds that is the same size as the given data.
|
java.util.List<PartitionedDataset<DataType>> |
RandomByTwoFoldCreator.createFolds(java.util.Collection<? extends DataType> data) |
java.util.ArrayList<PartitionedDataset<DataType>> |
RandomFoldCreator.createFolds(java.util.Collection<? extends DataType> data)
Creates the folds from the given data by passing the data into the
set data partitioner multiple times.
|
static <DataType> java.util.List<PartitionedDataset<DataType>> |
CrossFoldCreator.createFolds(java.util.Collection<? extends DataType> data,
int numFolds,
java.util.Random random)
Creates the requested number of cross-validation folds from the given
data.
|
java.util.List<PartitionedDataset<FoldDataType>> |
ValidationFoldCreator.createFolds(java.util.Collection<? extends InputDataType> data)
Creates a list of partitioned (training and testing) datasets from the
given single dataset.
|
Modifier and Type | Method and Description |
---|---|
SummaryType |
LearnerRepeatExperiment.evaluatePerformance(BatchLearner<? super java.util.Collection<? extends InputDataType>,? extends LearnedType> learner,
PartitionedDataset<? extends InputDataType> data)
Performs the experiment.
|
protected void |
LearnerRepeatExperiment.runExperiment(PartitionedDataset<? extends InputDataType> data)
Runs the experiment.
|
protected void |
LearnerRepeatExperiment.runTrial(PartitionedDataset<? extends InputDataType> data)
Runs one trial in the experiment.
|
protected abstract void |
AbstractValidationFoldExperiment.runTrial(PartitionedDataset<FoldDataType> fold)
Runs a single trial of the experiment on one fold of the data.
|
protected void |
LearnerComparisonExperiment.runTrial(PartitionedDataset<FoldDataType> fold)
Runs a single trial of the experiment on one fold of the data.
|
protected void |
LearnerValidationExperiment.runTrial(PartitionedDataset<FoldDataType> fold) |
Modifier and Type | Method and Description |
---|---|
protected void |
AbstractValidationFoldExperiment.runExperiment(java.util.Collection<PartitionedDataset<FoldDataType>> folds)
Runs the underlying validation fold experiment using the given data.
|
protected void |
ParallelLearnerValidationExperiment.runExperiment(java.util.Collection<PartitionedDataset<FoldDataType>> folds) |