Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
Modifier and Type | Interface and Description |
---|---|
interface |
VectorThresholdLearner<OutputType>
An interface class for decider learners that produce a threshold function
on a vector element based on maximizing some gain value.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractVectorThresholdMaximumGainLearner<OutputType>
An abstract class for decider learners that produce a threshold function
on a vector element based on maximizing some gain value.
|
class |
RandomSubVectorThresholdLearner<OutputType>
Learns a decision function by taking a randomly sampling a subspace from
a given set of input vectors and then learning a threshold function by
passing the subspace vectors to a sublearner.
|
class |
VectorThresholdGiniImpurityLearner<OutputType>
Learns vector thresholds based on the Gini impurity measure.
|
class |
VectorThresholdHellingerDistanceLearner<OutputType>
A categorization tree decision function learner on vector data that learns a
vector value threshold function using the Hellinger distance.
|
class |
VectorThresholdInformationGainLearner<OutputType>
The
VectorThresholdInformationGainLearner computes the best
threshold over a dataset of vectors using information gain to determine the
optimal index and threshold. |
class |
VectorThresholdVarianceLearner
The
VectorThresholdVarianceLearner computes the best threshold over
a dataset of vectors using the reduction in variance to determine the
optimal index and threshold. |
Modifier and Type | Field and Description |
---|---|
protected DeciderLearner<? super InputType,OutputType,?,?> |
AbstractDecisionTreeLearner.deciderLearner
The learning algorithm for the decision function.
|
protected DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> |
RandomSubVectorThresholdLearner.subLearner
The decider learner for the subspace.
|
Modifier and Type | Method and Description |
---|---|
DeciderLearner<? super InputType,OutputType,?,?> |
AbstractDecisionTreeLearner.getDeciderLearner()
Gets the learner for the decision function.
|
DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> |
RandomSubVectorThresholdLearner.getSubLearner()
Gets the learner used to learn a threshold function over the subspace.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractDecisionTreeLearner.setDeciderLearner(DeciderLearner<? super InputType,OutputType,?,?> deciderLearner)
Sets the learner for the decision function.
|
void |
RandomSubVectorThresholdLearner.setSubLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner)
Sets the learner used to learn a threshold function over the subspace.
|
Constructor and Description |
---|
AbstractDecisionTreeLearner(DeciderLearner<? super InputType,OutputType,?,?> deciderLearner)
Creates a new instance of AbstractDecisionTreeLearner.
|
CategorizationTreeLearner(DeciderLearner<? super InputType,OutputType,?,?> deciderLearner)
Creates a new instance of CategorizationTreeLearner.
|
CategorizationTreeLearner(DeciderLearner<? super InputType,OutputType,?,?> deciderLearner,
int leafCountThreshold,
int maxDepth)
Creates a new instance of CategorizationTreeLearner.
|
CategorizationTreeLearner(DeciderLearner<? super InputType,OutputType,?,?> deciderLearner,
int leafCountThreshold,
int maxDepth,
java.util.Map<OutputType,java.lang.Double> priors)
Creates a new instance of CategorizationTreeLearner.
|
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
int[] dimensionsToConsider,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner . |
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
java.util.Random random)
Creates a new
RandomSubVectorThresholdLearner . |
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner . |
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner)
Creates a new instance of CategorizationTreeLearner with a mean node
learner
|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner)
Creates a new instance of CategorizationTreeLearner.
|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner,
int leafCountThreshold,
int maxDepth)
Creates a new instance of CategorizationTreeLearner.
|