Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
ParallelHiddenMarkovModel<ObservationType>
A Hidden Markov Model with parallelized processing.
|
Modifier and Type | Field and Description |
---|---|
protected HiddenMarkovModel<ObservationType> |
AbstractBaumWelchAlgorithm.initialGuess
Initial guess for the iterations.
|
protected HiddenMarkovModel<ObservationType> |
AbstractBaumWelchAlgorithm.result
Result of the Baum-Welch Algorithm
|
Modifier and Type | Method and Description |
---|---|
HiddenMarkovModel<ObservationType> |
HiddenMarkovModel.clone() |
static <ObservationType> |
HiddenMarkovModel.createRandom(java.util.Collection<? extends ProbabilityFunction<ObservationType>> distributions,
java.util.Random random)
Creates a Hidden Markov Model with the given probability function for
each state, but sampling the columns of the transition matrix and the
initial probability distributions from a diffuse Dirichlet.
|
static <ObservationType> |
HiddenMarkovModel.createRandom(int numStates,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> learner,
java.util.Collection<? extends ObservationType> data,
java.util.Random random)
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
|
static <ObservationType> |
HiddenMarkovModel.createRandom(int numStates,
ComputableDistribution<ObservationType> distribution,
java.util.Random random)
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
|
HiddenMarkovModel<ObservationType> |
AbstractBaumWelchAlgorithm.getInitialGuess()
Getter for initialGuess.
|
HiddenMarkovModel<ObservationType> |
AbstractBaumWelchAlgorithm.getResult() |
HiddenMarkovModel<ObservationType> |
BaumWelchAlgorithm.learn(MultiCollection<ObservationType> data)
Allows the algorithm to learn against multiple sequences of data.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractBaumWelchAlgorithm.setInitialGuess(HiddenMarkovModel<ObservationType> initialGuess)
Setter for initialGuess.
|
protected double |
BaumWelchAlgorithm.updateSequenceLogLikelihoods(HiddenMarkovModel<ObservationType> hmm)
Updates the internal sequence likelihoods for the given HMM
|
Constructor and Description |
---|
AbstractBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of AbstractBaumWelchAlgorithm
|
BaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of BaumWelchAlgorithm
|
ParallelBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of ParallelBaumWelchAlgorithm
|
ParallelHiddenMarkovModel(HiddenMarkovModel<ObservationType> other)
\
Creates a new
ParallelHiddenMarkovModel from another
HiddenMarkovModel . |