Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
Modifier and Type | Field and Description |
---|---|
protected WithinClusterDivergence<? super ClusterType,? super DataType> |
PartitionalClusterer.clusterDivergenceFunction
The divergence function used to find the distance between two clusters.
|
Modifier and Type | Method and Description |
---|---|
WithinClusterDivergence<? super ClusterType,? super DataType> |
PartitionalClusterer.getWithinClusterDivergenceFunction()
Gets the metric on clusters used for partitioning.
|
Modifier and Type | Method and Description |
---|---|
void |
PartitionalClusterer.setWithinClusterDivergenceFunction(WithinClusterDivergence<? super ClusterType,? super DataType> clusterDivergenceFunction)
Sets the metric on clusters used for partitioning.
|
Constructor and Description |
---|
PartitionalClusterer(int numRequestedClusters,
WithinClusterDivergence<ClusterType,DataType> divergenceFunction,
IncrementalClusterCreator<ClusterType,DataType> creator)
Creates a new partitional clusterer.
|
Modifier and Type | Class and Description |
---|---|
class |
WithinClusterDivergenceWrapper<ClusterType extends Cluster<DataType>,DataType>
Accumulates the results of a
ClusterDivergenceFunction by summing the
divergence of each point to its cluster. |
class |
WithinNormalizedCentroidClusterCosineDivergence<V extends Vectorizable>
This class calculates the total cosine divergence between all members of a
cluster and the cluster's centroid
|