Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
Modifier and Type | Field and Description |
---|---|
protected ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> |
AgglomerativeClusterer.divergenceFunction
The divergence function used to find the distance between two clusters.
|
Modifier and Type | Method and Description |
---|---|
ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> |
AgglomerativeClusterer.getDivergenceFunction()
Gets the divergence function used in clustering.
|
Modifier and Type | Method and Description |
---|---|
void |
AgglomerativeClusterer.setDivergenceFunction(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)
Sets the divergence function.
|
Constructor and Description |
---|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Initializes the clustering to use the given metric between
clusters, and the given cluster creator.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
double maxDistance)
Initializes the clustering to use the given metric between
clusters, the given cluster merger, and the maximum
distance between clusters to allow when merging.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
int minNumClusters)
Initializes the clustering to use the given metric between
clusters, the given cluster creator, and the minimum number of
clusters to allow.
|
AgglomerativeClusterer(ClusterToClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
int minNumClusters,
double maxDistance)
Initializes the clustering to use the given metric between
clusters, the given cluster merger, the minimum number of
clusters to allow, and the maximum minimum distance between
clusters to allow.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The AbstractClusterToClusterDivergenceFunction class is an abstract class
that helps out implementations of ClusterToClusterDivergenceFunction
implementations by holding a DivergenceFunction between elements of a
cluster.
|
class |
ClusterCentroidDivergenceFunction<DataType>
The ClusterCentroidDivergenceFunction class implements the distance
between two clusters by computing the distance between the cluster's
centroid.
|
class |
ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterCompleteLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
class |
ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterMeanLinkDivergenceFunction class implements the mean linkage
distance metric between two clusters.
|
class |
ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterSingleLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|