Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
Modifier and Type | Field and Description |
---|---|
protected ClusterDivergenceFunction<? super ClusterType,? super DataType> |
KMeansClusterer.divergenceFunction
The divergence function between cluster being used.
|
Modifier and Type | Method and Description |
---|---|
ClusterDivergenceFunction<? super ClusterType,? super DataType> |
KMeansClusterer.getDivergenceFunction()
Gets the divergence function used in clustering.
|
Modifier and Type | Method and Description |
---|---|
void |
KMeansClusterer.setDivergenceFunction(ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)
Sets the divergence function.
|
Constructor and Description |
---|
KMeansClusterer(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of KMeansClusterer using the given parameters.
|
KMeansClustererWithRemoval(int numRequestedClusters,
int maxIterations,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<ClusterType,DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
double removalThreshold)
Creates a new instance of KMeansClusterer using the given parameters.
|
ParallelizedKMeansClusterer(int numRequestedClusters,
int maxIterations,
java.util.concurrent.ThreadPoolExecutor threadPool,
FixedClusterInitializer<ClusterType,DataType> initializer,
ClusterDivergenceFunction<? super ClusterType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator)
Creates a new instance of ParallelizedKMeansClusterer2
|
PartitionalClusterer(int numRequestedClusters,
ClusterDivergenceFunction<ClusterType,DataType> divergenceFunction,
IncrementalClusterCreator<ClusterType,DataType> creator)
Creates a new partitional clusterer.
|
Modifier and Type | Class and Description |
---|---|
class |
CentroidClusterDivergenceFunction<DataType>
The CentroidClusterDivergenceFunction class implements a divergence function
between a cluster and an object by computing the divergence between the
center of the cluster and the object.
|
class |
GaussianClusterDivergenceFunction
The GaussianClusterDivergenceFunction class implements a divergence
function between a Gaussian cluster and a vector, which is calculated
by finding the likelihood that the vector was generated from that Gaussian
and then returning the negative of the likelihood since it is a divergence
measure, not a similarity measure.
|
Modifier and Type | Method and Description |
---|---|
ClusterDivergenceFunction<? super ClusterType,? super DataType> |
ClusterDistortionMeasure.getCostParameters() |
Modifier and Type | Method and Description |
---|---|
void |
ClusterDistortionMeasure.setCostParameters(ClusterDivergenceFunction<? super ClusterType,? super DataType> costParameters) |
Constructor and Description |
---|
ClusterDistortionMeasure(ClusterDivergenceFunction<ClusterType,DataType> costParameters)
Creates a new instance of ClusterDistortionMeasure
|
ParallelClusterDistortionMeasure(ClusterDivergenceFunction<ClusterType,DataType> costParameters)
Creates a new instance of ClusterDistortionMeasure
|