Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.cluster |
Provides implementations of different types of clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> |
AffinityPropagation.clusters
The clusters that have been found so far.
|
Modifier and Type | Method and Description |
---|---|
ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> |
KMeansFactory.create() |
static PartitionalClusterer<Vector,CentroidCluster<Vector>> |
PartitionalClusterer.create(int numRequestedClusters)
Create a partitional clusterer, using Euclidean distance and a vector
mean centroid cluster creator.
|
static ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> |
KMeansFactory.create(int numClusters,
java.util.Random random)
Creates a new parallelized k-means clustering algorithm for vector data
with the given number of clusters (k) and random number generator.
|
static ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> |
KMeansFactory.create(int numClusters,
Semimetric<? super Vector> distanceMetric,
java.util.Random random)
Creates a new parallelized k-means clustering algorithm for vector data
with the given number of clusters (k), distance metric, and random
number generator.
|
protected java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> |
AffinityPropagation.getClusters()
Gets the current clusters, which is a sparse mapping of exemplar
identifier to cluster object.
|
java.util.ArrayList<CentroidCluster<DataType>> |
AffinityPropagation.getResult() |
Modifier and Type | Method and Description |
---|---|
protected void |
AffinityPropagation.setClusters(java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> clusters)
Sets the current clusters, which is a sparse mapping of exemplar
identifier to cluster object.
|
Constructor and Description |
---|
OptimizedKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
Metric<? super DataType> metric,
ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer.
|
OptimizedKMeansClusterer(int numClusters,
int maxIterations,
FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
Metric<? super DataType> metric,
ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer.
|
Modifier and Type | Class and Description |
---|---|
class |
MiniBatchCentroidCluster |
class |
NormalizedCentroidCluster<ClusterType>
Add the ability to store the centroid of the normalized vectors belonging to
a centroid cluster.
|
Modifier and Type | Method and Description |
---|---|
CentroidCluster<Vector> |
VectorMeanCentroidClusterCreator.createCluster() |
CentroidCluster<DataType> |
MedoidClusterCreator.createCluster(java.util.Collection<? extends DataType> members)
Creates a CentroidCluster at the member that minimizes the sum of
divergence between all members
|
CentroidCluster<Vector> |
VectorMeanCentroidClusterCreator.createCluster(java.util.Collection<? extends Vector> members) |
Modifier and Type | Method and Description |
---|---|
void |
VectorMeanCentroidClusterCreator.addClusterMember(CentroidCluster<Vector> cluster,
Vector member) |
boolean |
VectorMeanCentroidClusterCreator.removeClusterMember(CentroidCluster<Vector> cluster,
Vector member) |
Modifier and Type | Method and Description |
---|---|
double |
ClusterCentroidDivergenceFunction.evaluate(CentroidCluster<DataType> from,
CentroidCluster<DataType> to)
This method computes the complete link distance between the two given
Clusters.
|
double |
ClusterCentroidDivergenceFunction.evaluate(CentroidCluster<DataType> from,
CentroidCluster<DataType> to)
This method computes the complete link distance between the two given
Clusters.
|
double |
CentroidClusterDivergenceFunction.evaluate(CentroidCluster<DataType> cluster,
DataType other)
Evaluates the divergence between the cluster centroid and the given
object.
|