Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagation<DataType>
The
AffinityPropagation algorithm requires three parameters:
a divergence function, a value to use for self-divergence, and a damping
factor (called lambda in the paper; 0.5 is the default). |
class |
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
class |
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
class |
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
class |
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
class |
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
not have sufficient membership to pass a simple statistical significance
test.
|
class |
MiniBatchKMeansClusterer<DataType extends Vector>
Approximates k-means clustering by working on random subsets of the
data.
|
class |
OptimizedKMeansClusterer<DataType>
This class implements an optimized version of the k-means algorithm that
makes use of the triangle inequality to compute the same answer as k-means
while using less distance calculations.
|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
class |
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |