Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
Modifier and Type | Class and Description |
---|---|
class |
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
using the provided cost function and perturbation function.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
that uses a given cost function to minimize and a given reproduction
function for generating the population.
|
class |
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
class |
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
|
class |
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure.
|
class |
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators.
|
class |
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
Levenberg-Marquardt Estimation (or LMA).
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|